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Abstract: The Bayesian method is used to study the inference of the semi-parametric measurement error 

model (MEs) with longitudinal data. A semi-parametric Bayesian method combined with fracture prior and 

Gibbs sampling combined with Metropolis-Hastings (MH) algorithm is applied and applied to the simulation 

observation from the posterior distribution, and the combined Bayesian statistics of unknown parameters 

and measurement errors are obtained. We obtained Bayesian estimates of the parameters and covariates of 

the measurement error model. Under three different priori assumptions, four simulation studies illustrate 

the effectiveness and utility of the proposed method. 
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1. Introduction 

Longitudinal data is obtained when the same individual is repeatedly measured at different time points. 

Longitudinal data is widely found in bio-medicine, epidemiology and labor medicine. For example, biomedical 

longitudinal samples can generally be obtained through clinical trials and observational cohort studies. 

Longitudinal data is also widely used in the fields of finance, economy, etc. It is an unbalanced data and is 

generally processed using a linear hybrid model. Measurement error data and missing data are often 

encountered for various reasons. When the covariate contains measurement error, You (2006) [1] proposed 

a profile least squares estimation method for error correction; Zhou (2009) [2] the covariate of measurement 

error in the research model has statistical inference problem of auxiliary information; Wei (2010) [3] studied 

the parameter estimation problem of the model when the response variable is missing and the covariate 

contains the measurement error; Wei (2012) [4] studied the constraint estimation and hypothesis testing of 

the variable coefficient partial linear measurement error model parameters. There are also Liang, H�̈�rdel and 

Carroll (1999) [5], Ma and Carroll (2006) [6], Liang, Wang and Carroll (2007) [7], Pan, Zeng and Lin (2008) 

[8] and other literature pairs. Such models have been studied. This paper proposes a hybrid algorithm for 

generating the observations required for Bayesian inference from the parameter posterior distribution and 

from the covariates of the ME. The algorithm combines a normal distribution with a mixed normal 

distribution. Gibbs sampling of a priori and MH algorithms was broken. 

2. The Measurement Error Model 

For 𝑖 = 1, … , 𝑛, hypothesis Yi is the observation variable, which Xi is an unobservable covariate vector of 

order𝑟 × 1 , and Ui is a covariate vector that can be observed in one order 𝑝 × 1 . Let 𝑍𝑖 = (𝑋𝑖
𝑇 , 𝑈𝑖

𝑇)𝑇 , we 
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assume that the values 𝑌𝑖  are conditionally independent of each other. For longitudinal data, we consider 

the following generalized linear measurement error model of structure. 

𝑃(𝑌𝑖|𝑋𝑖 , 𝜓) = 𝒆𝒙𝒑{
𝑌𝑖𝜏𝑖−𝑑(𝜏𝑖)

𝜓
+ 𝑐(𝑌𝑖 , 𝜓)}.                       (1) 

Here 𝛾𝑖 = 𝐸(𝑌𝑖|𝑋𝑖) = �̇�(𝜏𝑖) ,  𝜓  is a divergence parameter, d (⋅) and c (⋅,⋅) are specific differentiable 

functions, and has �̇�(𝛼𝑖) = ∂𝑑(𝜏𝑖) ∂𝜏𝑖⁄   and �̈�(𝜏𝑖) = ∂2𝑑(𝜏𝑖) ∂𝜏𝑖
2⁄  . The conditional mean 𝛾𝑖  satisfies the 

following equation. 

𝜆𝑖 = 𝑔(𝛾𝑖) = 𝑋𝑖
𝑇𝛽𝑧 + 𝑈𝑖

𝑇𝛽𝑣 = 𝑍𝑖
𝑇𝛽.                          (2) 

Here 𝑔(⋅)  is a monotonic differentiable link function, which  𝛽 = (𝛽𝑧
𝑇 , 𝛽𝑣

𝑇)𝑇  is an unknown regression 

coefficient with vector (𝑟 + 𝑝) × 1. According to reference [9], for each individual i, we measure 𝑚 times 

for the true value covariate 𝑋𝑖 . 𝑌𝑖  and 𝑋𝑖  are error independent. That is, for each 𝑗 = 1, … , 𝑚 with following 

equations, we can't observe 𝑋𝑖but we can observe 𝑊ij. 

𝑊ij = 𝑋𝑖 + 𝜂𝑖𝑗 .                                   (3) 

These measurement error values 𝜂ijare subject to unknown distributions, and they are independent of the 

true values 𝑋𝑖  . According to Lachos (2010) [10], our hypothetical distribution 𝜂ij  is suitable for a mixed 

model of the Dirichlet Process (DP). 

In order to calculate the previously set covariate measurement error model, we also need to define a real 

covariate model. The true covariate model for 𝑋ki (𝑘 = 1, … , 𝑟) can be defined as 

𝑋ki = 𝛼𝑘0 + 𝛼𝑘𝑣
𝑇 𝑈𝑖 + 𝜉𝑘𝑖 , 𝜉𝑘𝑖~𝑁(0, 𝜎𝑧

2).                         (4) 

Here 𝛼𝑘0 is an intercept, which𝛼𝑘𝑣 = (𝛼𝑘1, … , 𝛼𝑘𝑝)𝑇 is an order of 𝑝 × 1unknown regression coefficient 

vectors. Let 𝑌 = {𝑌1, … , 𝑌𝑛} , 𝑋 = {𝑋1, … , 𝑋𝑛} , 𝑈 = {𝑈1, … , 𝑈𝑛} , 𝜂 = {𝜂1, … , 𝜂𝑛}  and 𝑊 = {𝑊1, … , 𝑊𝑛} , 𝑋𝑖 =

(𝑋1𝑖 , … , 𝑋𝑟𝑖)𝑇 , 𝜂𝑖 = (𝜂𝑖1, … , 𝜂𝑖𝑚)  and 𝑊𝑖 = {𝑊𝑖1, … , 𝑊𝑖𝑚} , for each 𝑖 = 1, … , 𝑛 .Suppose 𝜀𝑦 = {𝛽, 𝜓} , 𝜀𝛼 =

{𝛼10, … , 𝛼𝑟0, 𝛼1𝑣 , … 𝛼𝑟𝑣 , 𝜎𝑧
2}  and𝜀 = {𝜀𝑦, 𝜀𝛼, 𝜀𝜂} , 𝜀𝜂 is the parameter of equation (3). The joint probability 

density function for{𝑌, 𝑊, 𝜃, 𝑋} representation  

=),,,,(  UXWYP ∏ {𝑃(𝑌𝑖|𝑋𝑖 , 𝑈𝑖; 𝜀𝑦)𝑃(𝑊𝑖|𝑋𝑖; 𝜀𝜂)𝑃(𝑋𝑖|𝑈𝑖; 𝜀𝛼)}𝑛
𝑖=1 .            (5) 

We set these parameters  𝛽，𝜓，𝛼𝑘 = (𝛼𝑘0, 𝛼𝑘𝑣
𝑇 )𝑇  for 𝑘 = 1, … , 𝑟  and 𝜎𝑧

2  with a priori obey the 

following distribution 

𝛽|𝜓, 𝛽0, 𝐻𝛽
0～𝑁𝑟+𝑝(𝛽0, 𝜓−1𝐻𝛽

0), 𝜓−1|𝑏1, 𝑏2～Γ(𝑏1, 𝑏2), 

𝛼𝑘|𝛼𝑘
0，𝐻𝛼𝑘

0 ～𝑁𝑝+1(𝛼𝑘
0, 𝜓−1𝐻𝛼𝑘

0 ), 𝜎𝑧
−2|𝑑1, 𝑑2～Γ(𝑑1, 𝑑2). 

These 𝑏1, 𝑏2, 𝛽0, 𝐻𝛽
0, 𝛼𝑘

0, 𝐻𝛼𝑘
0 , 𝑑1and 𝑑2are hyperparameters, and assume that their values are given by a 

priori information. According to the joint probability density function given above and their priors, we can 

use the Bayesian method to make statistical inferences on the parameters 𝜀 = {𝜀𝑦, 𝜀𝛼, 𝜀𝜂}. In addition, we use 

Gibbs sampling and Metropolis-Hastings algorithm to analyze the measurement error model with 

longitudinal data. We get the posterior distribution of the interested parameters  

𝑃(𝜎𝑧
−2|𝑋, 𝑈, 𝛼)～Γ(𝑑1 + 0.5𝑛, 𝑑2 + 0.5 ∑ ∑ (𝑋𝑘𝑖 − 𝛼𝑘0 − 𝛼𝑘𝑣

𝑇 𝑈𝑖)
2𝑛

𝑖=1
𝑟
𝑘=1 ); 

𝑃(𝛽|𝜓, 𝑌, 𝑋, 𝑈) ∝ 𝑒𝑥𝑝{ 𝜓−1 ∑(𝑌𝑖𝜏𝑖 − 𝑑(𝜏𝑖))

𝑛

𝑖=1

, 0.5𝜓−1(𝛽 − 𝛽0)𝑇(𝐻𝛽
0)−1(𝛽

− 𝛽0)}𝑃(𝛼𝑘|𝑋，𝑈, 𝜎𝑥
2)～𝑁(𝜇𝛼𝑘

* ,Ω𝛼𝑘

* ) 
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* = (∑ 𝑈𝑖
*𝑛

𝑖=1 𝑈𝑖
*𝑇

𝜎𝑧
−2 + (𝐻𝛼𝑘

0 )−1)−1，𝑈𝑖
* = (1, 𝑈𝑖

𝑇)𝑇. 

3. Simulation and Bayesian Estimation 

In order to test the feasibility of the Bayesian method in the case where our previously assumed model 

obeys a large number of different distributions in the measurement error 𝜂ij , for the sample size 𝑛 =

200, 𝑚 = 5  in the generalized linear measurement error model, 100 sets of data sets {(𝑌𝑖 , 𝑈𝑖 , 𝑊𝑖 , 𝑋𝑖): 𝑖 =

1, … , 𝑛}  are repeatedly generated from the probability density function with (Bernoulli) distribution for 

simulation studies 

𝑌𝑖～𝐵(1, 𝑝𝑖).                                     (6) 

Here𝜆𝑖 = 𝑙𝑜𝑔{ 𝑝𝑖 (1 − 𝑝𝑖⁄ )} = 𝑋𝑖
𝑇𝛽𝑧 + 𝑈𝑖

𝑇𝛽𝑣 = 𝑍𝑖
𝑇𝛽 . Assumptions𝑈𝑖~𝑁(0,0.25𝐼3) , 𝑋1𝑖  and𝑋2𝑖  are derived 

from the data generated according to equation (4). Under this distribution, the value 𝜓 is known to be a 

constant according to equation (1). For 𝑘 = 1 and 2, the true values 𝛽𝑧, 𝛽𝑣, 𝛼𝑘 and 𝜎𝑧
2 are taken as 

𝛽𝑧 = (0.8,0.9)𝑇, 𝛽𝑣 = (0.5,0.5,0.5)𝑇 , 𝛼𝑘 = (0.2,0.2,0.2,0.5)𝑇  and 𝜎𝑧
2 11. To test the validity of the prior 

metric measurement error 𝜂𝑖𝑗 = (𝜂𝑖𝑗1, 𝜂𝑖𝑗2)𝑇 with TCDP (Truncate and Centered Dirichlet process), we 

consider the following two distribution hypotheses for𝜂𝑖𝑗𝑘: 

Simulation 1: We assume 𝜂𝑖𝑗𝑘 that it is from𝜂𝑖𝑗𝑘～𝑁(0,1. 22). 

Simulation 2: We assume 𝜂𝑖𝑗𝑘 that it is from 

𝜂𝑖𝑗𝑘～0.6𝑁(−0.4,0. 22) + 0.4𝑁(0.6,0. 22). 

Simulation 3: We assume 𝜂𝑖𝑗𝑘 that it is from 

𝜂𝑖𝑗𝑘~0.3𝑁(0.5,0.1) + 0.2𝑁(3,0.1) + 0.5𝑁(−1.5,0.1) 

Simulation 4: We assume 𝜂𝑖𝑗𝑘that it is from 

𝜂𝑖𝑗𝑘～0.3𝑁(0.5,0.1) + 0.2𝑁(3,0.1) + 0.1𝑁(−3.5,0.1) + 0.4𝑁(−1,0.1). 

To study the sensitivity of a priori to Bayesian estimation, we consider the following three priori 

assumptions for the parameters𝛽 and𝛼𝑘. 

Type A. About a priori hyperparameters 𝛽 and 𝛼𝑘 are chosen to be 𝛽，𝛽，𝛽 and 𝛽. This ensures a good 

priori information in the simulation test. 

Type B. About a priori hyperparameters 𝛽  and 𝛼𝑘  are chosen to be 𝛽0 = 1.5 × (0.8,0.9,0.5,0.5,0.5)𝑇 , 

𝐻𝛽
0 = 0.75𝐼5, 𝐻𝛼𝑘

0 = 0.75𝐼4 and 𝛼𝑘
0 = 1.5 × (0.2,0.2,0.2,0.5)𝑇. This ensures a weak priori information in the 

simulation test. 

Type C. About a priori hyperparameters 𝛽 and 𝛼𝑘 are chosen to be𝛽0 = 0 × (0.8,0.9,0.5,0.5,0.5)𝑇, 𝐻𝛽
0 =

10𝐼5 , 𝛼𝑘
0 = 0 × (0.2,0.2,0.2,0.5)𝑇  and 𝐻𝛼𝑘

0 = 10𝐼4 . This ensures noninformative prior information in the 

simulation test. 

The simulation results are listed in Table 1-4. We drop the first 5000 iterations of all parameters and collect 

5000 data after 5000th to generate 100 sets of data from the posterior distribution of the full data through 

Marko. Bayesian Monte Carol (MCMC) sampling was used to evaluate Bayesian estimates. The results of the 

above two hypotheses and their three different a priori designs are given in Tables 1-4, where 'Bias' is the 

absolute value of the difference between the true value and the parameter mean of the 100 sets of replicates; 
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and 'RMS' It is the mean square error of the parameter estimates and true values for 100 replicates. We also 

have plotted densities of 𝜂𝑖𝑗𝑘 and �̂�𝑖𝑗𝑘 for Simulation 4 under Type C prior inputs in Fig. 1. 

 

Table 1. First Simulated Parameter Estimation 

Parameter 
True 
value 

Type  
Bias 

A  
RMS 

Type  
Bias 

B  
RMS 

Type  
Bias 

C  
RMS 

𝛼10 0.2 0.0032 0.0731 0.0164 0.0272 0.0059 0.0594 
𝛼11 0.2 0.0439 0.1536 0.0047 0.1257 0.0038 0.1846 
𝛼12 0.2 0.0076 0.1594 0.0367 0.1641 0.0531 0.1763 
𝛼13 0.5 0.0061 0.1079 0.0282 0.1174 0.0066 0.1237 
𝛼20 0.2 0.0138 0.0669 0.0180 0.0635 0.0337 0.0669 
𝛼21 0.2 0.0128 0.1711 0.0135 0.1062 0.0717 0.1151 
𝛼22 0.2 0.0078 0.1316 0.0287 0.1150 0.0418 0.1599 
𝛼23 0.5 0.0269 0.1443 0.0481 0.1688 0.0191 0.1652 
𝛽0 0.8 0.0173 0.0858 0.0332 0.0896 0.0202 0.0256 
𝛽1 0.9 0.0034 0.0763 0.0060 0.0702 0.0310 0.0712 
𝛽2 0.5 0.0374 0.1391 0.0854 0.1083 0.0236 0.1249 
𝛽3 0.5 0.0356 0.1330 0.0418 0.1834 0.0265 0.1395 
𝛽4 0.5 0.0132 0.1458 0.0229 0.1964 0.0335 0.1735 
𝜎𝑧

2 1.0 0.0073 0.0805 0.0053 0.0652 0.0086 0.0347 

 

Table 2. Second Simulated Parameter Estimation 

Parameter 
True 
value 

Type 
Bias 

A 
RMS 

Type 
Bias 

B 
RMS 

Type 
Bias 

C 
RMS 

𝛼10 0.2 0.0186 0.0352 0.0146 0.0756 0.0108 0.0863 

𝛼11 0.2 0.0150 0.1308 0.0082 0.1488 0.0126 0.1395 

𝛼12 0.2 0.0185 0.1991 0.0007 0.1526 0.091 0.1758 

𝛼13 0.5 0.0008 0.1293 0.0315 0.1697 0.0359 0.1382 

𝛼20 0.2 0.0064 0.0919 0.0326 0.0814 0.0227 0.0957 

𝛼21 0.2 0.0003 0.1638 0.0415 0.1364 0.0244 0.1705 

𝛼22 0.2 0.0388 0.1313 0.0226 0.1195 0.0008 0.1440 

𝛼23 0.5 0.0089 0.1357 0.0475 0.1384 0.0397 0.1254 

𝛽0 0.8 0.0046 0.0833 0.0245 0.0619 0.0047 0.0455 

𝛽1 0.9 0.0062 0.0546 0.0293 0.0550 0.0132 0.0644 

𝛽2 0.5 0.0137 0.1252 0.0426 0.1856 0.0325 0.2420 

𝛽3 0.5 0.0601 0.1327 0.0446 0.3213 0.0618 0.1754 

𝛽4 0.5 0.0160 0.1882 0.0201 0.1721 0.0080 0.1394 

𝜎𝑧
2 1.0 0.0061 0.0624 0.0075 0.0689 0.0092 0.0686 

 

Table 3. Third Simulated Parameter Estimation 

Parameter 
True 
value 

Type 
Bias 

A 
RMS 

Type 
Bias 

B 
RMS 

Type 
Bias 

C 
RMS 

𝛼10 0.2 0.0002 0.0482 0.0007 0.0425 0.0001 0.0436 

𝛼11 0.2 0.0112 0.1152 0.0171 0.1489 0.0146 0.1323 

𝛼12 0.2 0.0117 0.1221 0.0016 0.1144 0.0208 0.1539 

𝛼13 0.5 0.0018 0.1372 0.0133 0.1494 0.0324 0.1442 

𝛼20 0.2 0.0035 0.0856 0.0341 0.0817 0.0229 0.0886 

𝛼21 0.2 0.0045 0.1108 0.0203 0.1554 0.0132 0.1662 

𝛼22 0.2 0.0243 0.1030 0.0115 0.1059 0.0016 0.1400 

𝛼23 0.5 0.0035 0.1138 0.0191 0.1233 0.0146 0.1235 

𝛽0 0.8 0.0046 0.0324 0.0112 0.0309 0.0147 0.0626 

𝛽1 0.9 0.0035 0.0603 0.0130 0.0796 0.0064 0.0982 

𝛽2 0.5 0.0125 0.1340 0.0252 0.1697 0.0103 0.1236 

𝛽3 0.5 0.0105 0.1243 0.0358 0.1452 0.0209 0.1637 

𝛽4 0.5 0.0206 0.1338 0.0301 0.1277 0.0031 0.1458 

𝜎𝑧
2 1.0 0.0135 0.0562 0.0243 0.0775 0.0095 0.0864 
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Table 4. Fourth Simulated Parameter Estimation 

Parameter 
True 
value 

Type 
Bias 

A 
RMS 

Type 
Bias 

B 
RMS 

Type 
Bias 

C 
RMS 

𝛼10 0.2 0.0162 0.0562 0.0142 0.0766 0.0191 0.0864 
𝛼11 0.2 0.0060 0.1386 0.0092 0.1685 0.0125 0.1574 
𝛼12 0.2 0.0292 0.1133 0.0024 0.1142 0.0209 0.1476 
𝛼13 0.5 0.0018 0.1814 0.0241 0.1792 0.0361 0.1549 
𝛼20 0.2 0.0086 0.0411 0.0103 0.0614 0.0224 0.0881 
𝛼21 0.2 0.0013 0.1192 0.0405 0.1543 0.0264 0.1753 
𝛼22 0.2 0.0195 0.1320 0.0321 0.1286 0.0027 0.1405 
𝛼23 0.5 0.0062 0.1116 0.0143 0.1236 0.0216 0.1330 
𝛽0 0.8 0.0144 0.0162 0.0112 0.0619 0.0256 0.0662 
𝛽1 0.9 0.0156 0.0703 0.0163 0.0551 0.0134 0.0844 
𝛽2 0.5 0.0241 0.1526 0.0442 0.1895 0.0327 0.1124 
𝛽3 0.5 0.0160 0.1249 0.0254 0.1399 0.0216 0.1768 
𝛽4 0.5 0.0204 0.1135 0.0406 0.1183 0.0102 0.1821 
𝜎𝑧

2 1.0 0.0079 0.0853 0.0041 0.0897 0.0052 0.0752 

 

 

Fig. 1. Estimated versus true densities of 𝜂𝑖𝑗1and 𝜂𝑖𝑗2 as assumption under Type C prior inputs. 

 

4. Conclusion 

According to Table 1-4 and Fig. 1, we know that (i) the model uses Bayesian estimation to be reasonable 

and correct, regardless of the distribution 𝜂𝑖𝑗𝑘 and a priori assumptions, because the unknown parameters 

produce Bias values less than 0.1 and RMS values less than 0.2. (ii) Dirichlet priori is generally sufficient to 

capture the characteristics of the various distribution hypotheses of the measurement error model. (iii) The 

results show that the proposed method is a good estimate of the distribution 𝜂𝑖𝑗𝑘. 
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