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Abstract: Recently exact fractional differential equations have been introduced, using the conformable 

fractional derivative. In this paper, we propose and prove some new results on the integrating factor. We 

introduce a conformable version of several classical special cases for which the integrating factor can be 

determined. Specifically, the cases we will consider are where there is an integrating factor that is a function 

of only x, or a function of only y, or a simple formula of 𝑥 and 𝑦. In addition, using the Conformable Euler's 

Theorem on homogeneous functions, an integration factor for the conformable homogeneous differential 

equations is established. Finally, the above results apply in some interesting examples.  

 
Key words: A conformable Euler´s theorem, conformable fractional derivative, exact fractional differential 
equation, integrating factor. 

 
 

1. Introduction 

For the many years, many definitions of fractional derivative have been introduced by various researchers. 

One of them is the Riemann-Liouville fractional derivative and the second one is the so-called Caputo 

derivative. These definitions are mostly used for mathematical models in many applications and are defined, 

respectively,  

1) Riemann-Liouville definition. For 𝛼 ∈ [𝑛 − 1, 𝑛), the 𝛼 derivative of 𝑓 is 

𝐷𝑡0
𝛼 (𝑓)(𝑡) =

1

𝛤(𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝑥)

(𝑡 − 𝑥)𝛼−𝑛+1

𝑡

𝑡0

𝑑𝑥 

2) Caputo definition. For 𝛼 ∈ [𝑛 − 1, 𝑛), the 𝛼 derivative of 𝑓 is 

𝐷𝑡0
𝛼 (𝑓)(𝑡) =

1

𝛤(𝑛 − 𝛼)
∫

𝑓(𝑛)(𝑥)

(𝑡 − 𝑥)𝛼−𝑛+1

𝑡

𝑡0

𝑑𝑥 

Now, all definitions attempt to satisfy the usual properties of the standard derivative. The only property 

inherited by all definitions of fractional derivative is the linearity property. However, the following are the 

setbacks of one definition or another: 

1) The Riemann-Liouville derivative does not satisfy 𝐷𝑎
𝛼(1) = 0  ( 𝐷𝑎

𝛼(1) = 0  for the Caputo 

derivative.), if 𝛼 is not natural number. 

2) All fractional derivatives lost some of the basic properties that usual derivatives have such as the 

product rule, the quotient rule and the chain rule. 
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3) All fractional derivatives do not satisfy: 𝐷𝛼𝐷𝛽𝑓 = 𝐷𝛼+𝛽𝑓 in general. 

4) The Caputo definition assumes that function 𝑓 is differentiable. 

Recently, Khalil et al. introduced a new definition of fractional derivative called the conformable fractional 

derivative, [1]. Unlike other definitions, this new definition satisfies formulas of derivative of product and 

quotient of two functions and has a simpler chain rule. In addition, these authors introduce the conformable 

fractional derivative definition, the conformable integral definition, Rolle theorem and Mean value theorem 

for conformable fractional differentiable functions. In [2], Abdeljawad improves this new theory, 

establishing important elements of fractional calculus, such as: definitions of left and right conformable 

fractional derivatives and fractional integrals of higher order (i.e. of order 𝛼 > 1), the fractional power 

series expansion, the fractional transform Laplace definition, fractional integration by parts formulas, chain 

rule and Gronwall inequality.  

In the field of multivariate calculus, several works propose the extension of important concepts and 

results in the conformable sense. In [3], [4], the conformable partial derivative of the order 𝛼 ∈ (0,1] of the 

real value of several variables and conformable gradient vector are defined; and a conformable version of 

Clairaut´s Theorem for partial derivatives of conformable fractional orders is proven. In [5], two new results 

on homogeneous functions involving their conformable partial derivatives are introduced, specifically, 

homogeneity of the conformable partial derivatives of a homogeneous function and the conformable 

version of Euler´s Theorem.  

Finally, it is also a remarkable fact the large number of studies in the theory and application of fractional 

differential equations based on this new definition of derivative, which have been developed in a short time, 

[6]-[17]. 

The paper is organized as follows. In Section 2, the main concepts of conformable fractional calculus are 

presented. In Section 3, some results on exact fractional differential equations are recalled first, and then 

two new results on the integrating factor are proposed and proven. Specifically, the cases we will consider 

are where there is an integrating factor that is a function of only x, or a function of only y, or a simple 

formula of x and y. Finally, an integrating factor is determined for homogeneous fractional differential 

equations. 

2. Basic Definitions and Tools 

Definition 2.1. [1]. Given a function 𝑓: [0,∞) → 𝑅. Then the conformable fractional derivative of 𝑓 of 

order 𝛼, is defined by  

(𝑇𝛼𝑓)(𝑡) = lim
𝜖→0

𝑓(𝑡+𝜀𝑡1−𝛼)−𝑓(𝑡)

𝜀
    (1) 

For all 𝑡 > 0, 0 < 𝛼 ≤ 1. If 𝑓 is 𝛼-differentiable in some (0, 𝑎), 𝑎 > 0, and lim
𝑡→0+

(𝑇𝛼𝑓)(𝑡) exist, then it 

is defined as 

(𝑇𝛼𝑓)(0) = lim
𝑡→0+

(𝑇𝛼𝑓)(𝑡)    (2) 

As a consequence of the above definition, the following useful theorem is obtained, [1]. 

Theorem 2.1. If a function 𝑓: [0,∞) → 𝑅 is 𝛼-differentiable at 𝑡0 > 0, 0 < 𝛼 ≤ 1, then 𝑓 is continuous 

at 𝑡0. 

It is easily shown that 𝑇𝛼 satisfies the following properties, [1]. 

Theorem 2.2. Let 0 < 𝛼 ≤ 1 and 𝑓, 𝑔 be 𝛼-differentiable at a point 𝑡 > 0. Then 

1)  𝑇𝛼(𝑎𝑓 + 𝑏𝑔) = 𝑎 (𝑇𝛼𝑓) + 𝑏 (𝑇𝛼𝑔), ∀𝑎, 𝑏 ∈ 𝑅. 

2)  𝑇𝛼(𝑡
𝑝) = 𝑝𝑡𝑝−𝛼 , ∀𝑝 ∈ 𝑅. 

3)  𝑇𝛼(𝜆) = 0, for all constant functions 𝑓(𝑡) = 𝜆. 
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4) 𝑇𝛼(𝑓𝑔) = 𝑓(𝑇𝛼𝑔) + 𝑔(𝑇𝛼𝑓). 

5) 𝑇𝛼 (
𝑓

𝑔
) =

𝑔(𝑇𝛼𝑓)−𝑓(𝑇𝛼𝑔)

𝑔2
. 

6) If, in addition, 𝑓 is differentiable, then  (𝑇𝛼𝑓)(𝑡) = 𝑡
1−𝛼 𝑑𝑓

𝑑𝑡
(𝑡). 

The conformable fractional derivative of certain functions for above definition is given as follows: 

1) 𝑇𝛼(1) = 0. 

2) 𝑇𝛼(𝑠𝑖𝑛(𝑎𝑡)) = 𝑎𝑡
1−𝛼𝑐𝑜𝑠(𝑎𝑡), 𝑎 ∈ 𝑅. 

3) 𝑇𝛼(𝑐𝑜𝑠(𝑎𝑡)) = −𝑎𝑡
1−𝛼𝑠𝑖𝑛(𝑎𝑡), 𝑎 ∈ 𝑅. 

4) 𝑇𝛼(𝑒
𝑎𝑡) = 𝑎𝑒𝑎𝑡, 𝑎 ∈ 𝑅. 

Further, many functions behave as in the usual derivative. Here are some formulas: 

1) 𝑇𝛼 (
1

𝛼
𝑡𝛼) = 1 

2) 𝑇𝛼 (𝑒
1

𝛼
𝑡𝛼) = 𝑒

1

𝛼
𝑡𝛼  

3) 𝑇𝛼 (sin (
1

𝛼
𝑡𝛼)) = 𝑐𝑜𝑠 (

1

𝛼
𝑡𝛼) 

4) 𝑇𝛼 (cos (
1

𝛼
𝑡𝛼)) = −𝑠𝑖𝑛 (

1

𝛼
𝑡𝛼) 

Remark 2.1. One should notice that a function could be 𝛼-differentiable at a point but not differentiable. 

For example, take 𝑓(𝑡) = 3√𝑡
3

. Then(𝑇1
3

𝑓) (0) = lim
𝑡→0+

(𝑇1
3

𝑓) (𝑡) = 1, where (𝑇1
3

𝑓) (𝑡) = 1, for 𝑡 > 0. But  

𝑑𝑓

𝑑𝑡
(0) does not exist. 

Theorem 2.3 (Mean Value Theorem). [6]. Let 𝑎 > 0 and 𝑓: [𝑎, 𝑏] → 𝑅 be a function that satisfies, 

1) 𝑓 is continuous in[𝑎, 𝑏], 

2) 𝑓 is  𝛼-differentiable on (𝑎, 𝑏), for some 𝛼 ∈ (0,1]. 

Then, there exists 𝑐 ∈ (𝑎, 𝑏) such that 

(𝑇𝛼𝑓)(𝑐) = [
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
] 𝑐1−𝛼   (3) 

Definition 2.2. [2]. The (left) conformable derivative starting from 𝑎 of a function 𝑓: [𝑎,∞) → 𝑅 of 𝑓 of 

order 0 < 𝛼 ≤ 1, is defined by 

(𝑇𝛼
𝑎𝑓)(𝑡) = lim

𝜖→0

𝑓(𝑡+𝜀(𝑡−𝑎)1−𝛼)−𝑓(𝑡)

𝜀
    (4) 

When 𝑎 = 0, it is written as (𝑇𝛼𝑓)(𝑡). If 𝑓 is 𝛼-differentiable in some (𝑎, 𝑏), then define 

(𝑇𝛼
𝑎𝑓)(𝑎) = lim

𝑡→𝑎+
(𝑇𝛼

𝑎𝑓)(𝑡)   (5) 

Note that if 𝑓 is differentiable, then (𝑇𝛼
𝑎𝑓)(𝑎) = (𝑡 − 𝑎)1−𝛼

𝑑𝑓

𝑑𝑡
(𝑡). Theorem 2.2 holds for Definition 2.2 

when changing by (𝑡 − 𝑎).  

Theorem 2.4. (Chain Rule).[2]. Assume 𝑓, 𝑔: (𝑎,∞) → 𝑅 be (left) 𝛼-differentiable functions, where  

0 < 𝛼 ≤ 1. Let ℎ(𝑡) = 𝑓(𝑔(𝑡)). The ℎ(𝑡) is 𝛼-differentiable for all 𝑡 ≠ 𝑎 and 𝑔(𝑡) ≠ 0, therefore 

(𝑇𝛼
𝑎ℎ)(𝑡) = (𝑇𝛼

𝑎𝑓)(𝑔(𝑡)) ∙ (𝑇𝛼
𝑎𝑔)(𝑡). (𝑔(𝑡))𝛼−1    (6) 

If 𝑡 = 𝑎, then 

(𝑇𝛼
𝑎ℎ)(𝑎) = lim

𝑡→𝑎+
(𝑇𝛼

𝑎𝑓)(𝑔(𝑡)) ∙ (𝑇𝛼
𝑎𝑔)(𝑡). (𝑔(𝑡))𝛼−1     (7) 

Now, there is the following definition for the 𝛼-fractional integral of a function 𝑓 starting from 𝑎 ≥ 0. 

Definition 2.3. [1]. 𝐼𝛼
𝑎(𝑓)(𝑡) = ∫

𝑓(𝑥)

𝑥1−𝛼
𝑡

𝑎
∙ 𝑑𝑥, where the integral is the usual Riemann improper integral, 

and 𝛼 ∈ (0, 1]. 
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With the above definition, it was shown that 

Theorem 2.5. [1]. 𝑇𝛼
𝑎𝐼𝛼
𝑎(𝑓)(𝑡) = 𝑓(𝑡), for 𝑡 ≥ 𝑎, where 𝑓 is any continuous function in the domain of 

𝐼𝛼. 

Lemma 2.1. [2]. Let 𝑓: (𝑎, 𝑏) → 𝑅 be differentiable and 𝛼 ∈ (0, 1]. Then, for all 𝑎 > 0 we have, 

𝐼𝛼 
𝑎𝑇𝛼

𝑎(𝑓)(𝑡) = 𝑓(𝑡) − 𝑓(𝑎)   (8) 

Finally, [3], [4], the conformable partial derivative of a real valued function with several variables is 

defined as follows: 

Definition 2.4. Let 𝑓 be a real valued function with 𝑛 variables and 𝒂 = (𝑎1, … , 𝑎𝑛) ∈ 𝑅
𝑛 be a point 

whose ith component is positive. Then the limit 

lim
𝜖→0

𝑓(𝑎1,..,𝑎𝑖+𝜀𝑎𝑖
1−𝛼,…,𝑎𝑛)−𝑓(𝑎1,…,𝑎𝑛)

𝜀
   (9) 

If it exists, is denoted 
𝜕𝛼

𝜕𝑥𝑖
𝛼 𝑓(𝒂), and called the ith conformable partial derivative of 𝑓 of the order 𝛼 ∈

(0,1] at 𝑎. 

Remark 2.2. If a real valued function 𝑓 with 𝑛 variables has all conformable partial derivatives of the 

order 𝛼 ∈ (0,1] at 𝒂 = (𝑎1, … , 𝑎𝑛) ∈ 𝑅
𝑛, each 𝑎𝑖 > 0, then the conformable gradient of 𝑓 of the order 𝛼 

at a is 

𝛻𝛼𝑓(𝒂) = (
𝜕𝛼

𝜕𝑥1
𝛼 𝑓(𝒂),… ,

𝜕𝛼

𝜕𝑥𝑛
𝛼 𝑓(𝒂))   (10) 

Remark 2.3. Let 𝛼 ∈ (0,1] and 𝑓 be a real valued function with 𝑛 variables defined on an open set 

𝐷 ⊂ 𝑅𝑛 , such that, for all (𝑥1, … , 𝑥𝑛) ∈ 𝐷, each 𝑥𝑖 > 0. Function 𝑓 is said to be in 𝐶𝛼(𝐷, 𝑅) if all its 

conformable fractional partial derivatives of order 𝛼 exists and are continuous on 𝐷, [5]. 

In [3], Clairaut's Theorem for conformable partial derivatives fractional orders presented as follows: 

Theorem 2.6. Let 𝛼, 𝛽 be positive constants such that 0 < 𝛼, 𝛽 < 1. Assume That 𝑓(𝑥, 𝑦) is function 

for which 
𝜕𝛼

𝜕𝑥𝛼
(
𝜕𝛽𝑓(𝑥,𝑦)

𝜕𝑦𝛽
𝑓(𝑥, 𝑦)) and 

𝜕𝛽

𝜕𝑦𝛽
(
𝜕𝛼𝑓(𝑥,𝑦)

𝜕𝑥𝛼
𝑓(𝑥, 𝑦)) exists and are continuous over a domain 𝑋 ⊂ 𝑅𝑛 

such that for all (𝑥, 𝑦) ∈ 𝑋,  𝑥, 𝑦 > 0, then 

𝜕𝛼

𝜕𝑥𝛼
(
𝜕𝛽𝑓(𝑥,𝑦)

𝜕𝑦𝛽
𝑓(𝑥, 𝑦)) =

𝜕𝛽

𝜕𝑦𝛽
(
𝜕𝛼𝑓(𝑥,𝑦)

𝜕𝑥𝛼
𝑓(𝑥, 𝑦))    (11) 

For all (𝑥, 𝑦) ∈ 𝑋. 

3. Conformable Fractional Differential Equation Reducible to Exact: Integrating Factor 

In this section, some results on exact fractional differential equations are recalled, [6]. 

Definition 3.1. Let 0 < 𝛼 ≤ 1. A first order differential equation of the form 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 

is called 𝛼 − 𝑒𝑥𝑎𝑐𝑡 if there exists a function 𝛷(𝑥, 𝑦) such that 

𝜕𝛼𝛷

𝜕𝑦𝛼
= 𝑀 and 

𝜕𝛼𝛷

𝜕𝑥𝛼
= 𝑁 

Consequently, 

𝑑𝛼𝛷(𝑥, 𝑦) = 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 

From the properties of the conformable fractional derivative, we get Φ is a constant function. 

Theorem 3.1. Let 0 < 𝛼 ≤ 1. Let 𝑀,𝑁 be a real valued function with two variables defined on a set 𝐷 

and class 𝐶𝛼 on 𝐷. Then 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 𝑖𝑠 𝛼 − 𝑒𝑥𝑎𝑐𝑡 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 

𝜕𝛼𝑁

𝜕𝑥𝛼
=
𝜕𝛼𝑀

𝜕𝑦𝛼
 , ∀(𝑥, 𝑦) ∈ 𝐷  (12) 
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Definition 3.2. Let 0 < 𝛼 ≤ 1. Let 𝑀,𝑁, 𝜇 be a real valued function with two variables defined on a set 

𝐷 and class 𝐶𝛼  on 𝐷, with 𝑥, 𝑦 > 0 ∀(𝑥, 𝑦) ∈ 𝐷. The function 𝜇(𝑥, 𝑦) is an integrating factor to the 

fractional differential equation 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0, if the fractional differential equation 

𝜇(𝑥, 𝑦)𝑀(𝑥, 𝑦)𝑑𝑥 + 𝜇(𝑥, 𝑦)𝑁(𝑥, 𝑦)𝑑𝑦 = 0    (13) 

is 𝛼 − 𝑒𝑥𝑎𝑐𝑡. 

Remark 3.1. To find an integrating factor 𝜇(𝑥, 𝑦), apply the 𝛼 − 𝑒𝑥𝑎𝑐𝑡𝑛𝑒𝑠𝑠 condition on the equation 

(13) 

𝜕𝛼(𝜇𝑁)

𝜕𝑥𝛼
=
𝜕𝛼(𝜇𝑀)

𝜕𝑦𝛼
  (14) 

That is, 

𝜇 (
𝜕𝛼𝑀

𝜕𝑦𝛼
−
𝜕𝛼𝑁

𝜕𝑥𝛼
) = 𝑁(𝑥, 𝑦)

𝜕𝛼𝜇

𝜕𝑥𝛼
−𝑀(𝑥, 𝑦)

𝜕𝛼𝜇

𝜕𝑦𝛼
    (15) 

This is a fractional partial differential equation for the unknown function 𝜇(𝑥, 𝑦), which is more difficult 

to solve than the original fractional ordinary differential equation. However, for some special cases, 

equation (15) can be solved for an integrating factor. 

 Special Cases 

3.1.1. μ is a function of x or y 
If 𝜇 is a function of 𝑥 only, that is, 𝜇 = 𝜇(𝑥), [2], then 

𝜕𝛼𝜇

𝜕𝑥𝛼
= 𝑇𝛼𝜇 ,

𝜕𝛼𝜇

𝜕𝑦𝛼
= 0 

And equation (15) becomes 

𝑁𝑇𝛼𝜇 = 𝜇 (
𝜕𝛼𝑀

𝜕𝑦𝛼
−
𝜕𝛼𝑁

𝜕𝑥𝛼
) 

This implies that 

1

𝜇
𝑇𝛼𝜇 =

1

𝑁
(
𝜕𝛼𝑀

𝜕𝑦𝛼
−
𝜕𝛼𝑁

𝜕𝑥𝛼
) 

Since 𝜇(𝑥) is a function of 𝑥 only, left hand side is a function of 𝑥 only. Hence, if an integrating factor of 

the form 𝜇(𝑥) is to exit, right hand side must be is a function of 𝑥 only. Then the integrating factor is, [6], 

𝜇(𝑥) = 𝑒𝑥𝑝 [∫
1

𝑁
(
𝜕𝛼𝑀

𝜕𝑦𝛼
−
𝜕𝛼𝑁

𝜕𝑥𝛼
) 𝑥𝛼−1𝑑𝑥]    (16) 

Interchanging 𝑀 and 𝑁, and 𝑥 and 𝑦 in equation (15), one obtains an integrating factor for another 

special case, [6], 

𝜇(𝑦) = 𝑒𝑥𝑝 [∫
1

𝑀
(
𝜕𝛼𝑁

𝜕𝑥𝛼
−
𝜕𝛼𝑀

𝜕𝑦𝛼
)

⏟        
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑦 𝑜𝑛𝑙𝑦

𝑦𝛼−1𝑑𝑦]    (17) 

Example 3.1. Consider 

2𝑥𝛼𝑦𝛼𝑑𝑥 + (2𝑥2𝛼 − 4𝑦2+𝛼)𝑑𝑦 = 0 

For some 𝛼 ∈ (0,1]. 

Solution. Here  

𝜕𝛼(2𝑥𝛼𝑦𝛼)

𝜕𝑦𝛼
= 2𝛼𝑥𝛼  and  

𝜕𝛼(2𝑥2𝛼−4𝑦2+𝛼)

𝜕𝑦𝛼
= 4𝛼𝑥𝛼  
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Thus the equation is not conformable 𝛼 − 𝑒𝑥𝑎𝑐𝑡. 

So, 

𝜕𝛼(2𝑥2𝛼 − 4𝑦2+𝛼)

𝜕𝑦𝛼
−
𝜕𝛼(2𝑥𝛼𝑦𝛼)

𝜕𝑦𝛼
= 2𝛼𝑥𝛼 

Thus 

1

𝜇
𝑇𝛼𝜇 =

2𝛼𝑥𝛼

2𝑥𝛼𝑦𝛼
=
𝛼

𝑦𝛼
 

So now it is matter routine to solve the equation noticing that 

𝜇(𝑦) = 𝑒𝑥𝑝 [𝛼∫
1

𝑦𝛼
𝑦𝛼−1𝑑𝑦] = 𝑦𝛼 

3.1.2. μ is a function of x and y  
If 𝜇 is a function of 𝑧 only, where 𝑧 = 𝑧(𝑥, 𝑦), [2], then 

𝜕𝛼𝜇

𝜕𝑥𝛼
= (𝑇𝛼𝜇)(𝑧) ∙ 𝑧

𝛼−1 ∙
𝜕𝛼𝑧

𝜕𝑥𝛼
 ,
𝜕𝛼𝜇

𝜕𝑦𝛼
= (𝑇𝛼𝜇)(𝑧) ∙ 𝑧

𝛼−1 ∙
𝜕𝛼𝑧

𝜕𝑦𝛼
 

And equation (15) becomes 

(𝑇𝛼𝜇)(𝑧) ∙ 𝑧
𝛼−1 ∙ (𝑁 ∙

𝜕𝛼𝑧

𝜕𝑥𝛼
−𝑀 ∙

𝜕𝛼𝑧

𝜕𝑦𝛼
) = 𝜇 (

𝜕𝛼𝑀

𝜕𝑦𝛼
−
𝜕𝛼𝑁

𝜕𝑥𝛼
) 

This implies that 

1

𝜇(𝑧)
(𝑇𝛼𝜇)(𝑧) =

𝜕𝛼𝑀

𝜕𝑦𝛼
−
𝜕𝛼𝑁

𝜕𝑥𝛼

𝑧𝛼−1∙(𝑁∙
𝜕𝛼𝑧

𝜕𝑥𝛼
−𝑀∙

𝜕𝛼𝑧

𝜕𝑦𝛼
)
    (18) 

Since 𝜇(𝑧) is a function of 𝑧 only, left hand side is a function of 𝑧 only. Hence, if an integrating factor 

of the form 𝜇(𝑧) is to exit, right hand side must be is a function of 𝑧 only. Then the integrating factor is, 

𝜇(𝑧) = 𝑒𝑥𝑝 [∫

𝜕𝛼𝑀

𝜕𝑦𝛼
−
𝜕𝛼𝑁

𝜕𝑥𝛼

𝑧𝛼−1∙(𝑁∙
𝜕𝛼𝑧

𝜕𝑥𝛼
−𝑀∙

𝜕𝛼𝑧

𝜕𝑦𝛼
)
∙ 𝑧𝛼−1 ∙ 𝑑𝑧]    (19) 

Example 3.2. Find an integrating factor of the form 𝜇(𝑧), where 𝑧 = 𝑥𝑦, of the following equation 

(4𝑦1+𝛼 − 6𝑥𝑦𝛼)𝑑𝑥 + (6𝑥𝛼𝑦 − 4𝑥1+𝛼)𝑑𝑦 = 0 

for Some 𝛼 ∈ (0,1]. 

Solution. Here 

𝜕𝛼(4𝑦𝛼+1 − 6𝑥𝑦𝛼)

𝜕𝑦𝛼
= 4(1 + 𝛼)𝑦 − 6𝛼𝑥 

And  

𝜕𝛼(6𝑥𝛼𝑦 − 4𝑥𝛼+1)

𝜕𝑥𝛼
= 6𝛼𝑦 − 4(1 + 𝛼)𝑥 

Thus, the equation is not 𝛼 − 𝑒𝑥𝑎𝑐𝑡. 

Now, computing the conformable fractional partial derivative of function 𝜇(𝑧) with respect to 𝑥 and 𝑦, 

[3], then 

𝜕𝛼𝜇

𝜕𝑥𝛼
= (𝑇𝛼𝜇)(𝑧) ∙ 𝑧

𝛼−1 ∙
𝜕𝛼𝑧

𝜕𝑥𝛼
= 𝑦𝛼 ∙ (𝑇𝛼𝜇)(𝑧) 
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And 

 

𝜕𝛼𝜇

𝜕𝑦𝛼
= (𝑇𝛼𝜇)(𝑧) ∙ 𝑧

𝛼−1 ∙
𝜕𝛼𝑧

𝜕𝑦𝛼
= 𝑥𝛼 ∙ (𝑇𝛼𝜇)(𝑧) 

Substituting these derivatives in equation (19) so that 

1

𝜇(𝑧)
(𝑇𝛼𝜇)(𝑧) =

(2 − 𝛼)

𝑧𝛼
 

Finally, applying the fractional integral with respect to 𝑧 on both sides of above equation, an integrating 

factor is obtained 

𝜇(𝑥, 𝑦) = 𝑥2−𝛼𝑦2−𝛼 

Example 3.3. Find an integrating factor of the form 𝜇(𝑧), where 𝑧 = 𝑥 + 𝑦, of the following equation 

(3𝑥
1
2 − 𝑦

1
2) 𝑑𝑥 + (3𝑦

1
2 + 𝑥

1
2) 𝑑𝑦 = 0 

Solution. Here 

𝜕
1
2(3𝑥

1
2−𝑦

1
2)

𝜕𝑦
1
2

= −
1

2
 and  

𝜕
1
2(3𝑦

1
2+𝑥

1
2)

𝜕𝑥
1
2

=
1

2
 

Now, computing the conformable fractional partial derivative of function 𝜇(𝑧) with respect to 𝑥 and 𝑦, 

[2], then 

𝜕
1
2𝜇

𝜕𝑥
1
2

= (𝑇1
2
𝜇) (𝑧) ∙ 𝑧−

1
2 ∙
𝜕
1
2𝑧

𝜕𝑥
1
2

= 𝑥
1
2 ∙ 𝑧−

1
2 ∙ (𝑇1

2
𝜇) (𝑧) 

And 

𝜕
1
2𝜇

𝜕𝑦
1
2

= (𝑇1
2
𝜇) (𝑧) ∙ 𝑧−

1
2 ∙
𝜕
1
2𝑧

𝜕𝑦
1
2

= 𝑦
1
2 ∙ 𝑧−

1
2 ∙ (𝑇1

2
𝜇) (𝑧) 

Substituting these derivatives in equation (19) so that 

1

𝜇(𝑧)
(𝑇1

2
𝜇) (𝑧) = −

1

√𝑧
 

Finally, applying the fractional integral with respect to 𝑧 on both sides of above equation, an integrating 

factor is obtained 

𝜇(𝑥, 𝑦) =
1

𝑥 + 𝑦
 

3.1.3. Application to homogeneous fractional differential equation  
Let 𝛼 ∈ (0,1] and  𝑀,𝑁 are a real valued functions with two variables defined on an open set 𝐷 for 

witch (𝑡𝑥, 𝑡𝑦) ∈ 𝐷 whenever 𝑡 > 0 and (𝑥, 𝑦) ∈ 𝐷, with 𝑥, 𝑦 > 0, that satisfies 

1) 𝑀,𝑁 are homogeneous function of degree 𝑟 

2) 𝑀,𝑁 ∈ 𝐶𝛼 (𝐷, 𝑅)Then an integrating factor of the homogeneous differential equation 𝑀(𝑥, 𝑦)𝑑𝑥 +

𝑁(𝑥, 𝑦)𝑑𝑦 = 0, is given by 

(𝑥, 𝑦) =
1

𝑥𝛼∙𝑀(𝑥,𝑦)+𝑦𝛼∙𝑁(𝑥,𝑦)
    (20) 
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providing 𝑥𝛼 ∙ 𝑀(𝑥, 𝑦) + 𝑦𝛼 ∙ 𝑁(𝑥, 𝑦) ≠ 0, ∀(𝑥, 𝑦) ∈ 𝐷 

In effect, computing the conformable fractional partial derivatives of functions 𝜇𝑀 and 𝜇𝑁 with 

respect to 𝑥 and 𝑦, respectively, then 

𝜕𝛼

𝜕𝑦𝛼
(

𝑀(𝑥, 𝑦)

𝑥𝛼 ∙ 𝑀(𝑥, 𝑦) + 𝑦𝛼 ∙ 𝑁(𝑥, 𝑦)
) =

𝑦𝛼 ∙ 𝑁(𝑥, 𝑦) ∙
𝜕𝛼𝑀(𝑥, 𝑦)
𝜕𝑦𝛼

− 𝛼𝑀(𝑥, 𝑦)𝑁(𝑥, 𝑦) − 𝑦𝛼 ∙ 𝑀(𝑥, 𝑦) ∙
𝜕𝛼𝑁(𝑥, 𝑦)
𝜕𝑦𝛼

(𝑥𝛼 ∙ 𝑀(𝑥, 𝑦) + 𝑦𝛼 ∙ 𝑁(𝑥, 𝑦))2
 

And 

𝜕𝛼

𝜕𝑥𝛼
(

𝑁(𝑥, 𝑦)

𝑥𝛼 ∙ 𝑀(𝑥, 𝑦) + 𝑦𝛼 ∙ 𝑁(𝑥, 𝑦)
) =

𝑥𝛼 ∙ 𝑀(𝑥, 𝑦) ∙
𝜕𝛼𝑁(𝑥, 𝑦)
𝜕𝑥𝛼

− 𝛼𝑀(𝑥, 𝑦)𝑁(𝑥, 𝑦) − 𝑥𝛼 ∙ 𝑁(𝑥, 𝑦) ∙
𝜕𝛼𝑀(𝑥, 𝑦)
𝜕𝑥𝛼

(𝑥𝛼 ∙ 𝑀(𝑥, 𝑦) + 𝑦𝛼 ∙ 𝑁(𝑥, 𝑦))2
 

Finally, using the Conformable Euler´s Theorem on homogeneous functions, [5], the result is followed. 

Example 3.4. Consider 

(𝑥2+𝛼 + 𝑦𝑥1+𝛼)𝑑𝑥 + (2𝑥2+𝛼 + 3𝑦2+𝛼)𝑑𝑦 = 0 

For some 𝛼 ∈ (0,1]. 

Since 𝑀(𝑥, 𝑦) = 𝑥2+𝛼 + 𝑦𝑥1+𝛼  and 𝑁(𝑥, 𝑦) = 2𝑥2+𝛼 + 3𝑦2+𝛼are homogeneous function of degree 2 + 𝛼 

and class 𝐶𝛼 on open set 𝐷, with 𝑥, 𝑦 > 0, then above equation is an homogeneous differential equation and 

𝜇(𝑥, 𝑦) =
1

𝑥𝛼(𝑥2+𝛼 + 𝑦𝑥1+𝛼) + 𝑦𝛼(2𝑥2+𝛼 + 3𝑦2+𝛼)
=

1

𝑥2+2𝛼 + 𝑦𝑥1+2𝛼 + 2𝑥2+𝛼𝑦𝛼 + 3𝑦2+2𝛼
 

is an integrating factor of it. 

4. Conclusions 

The main objective of this work has been to generalize in the field of fractional calculus, some important 

results about the integrating factor for ordinary differential equations. The objective has been successfully 

achieved, so the definition of a partial derivative has been used to construct some results, such as: an 

integrating factor that is a function of only 𝑥, or a function of only 𝑦, an integrating factor that is a simple 

function of the variables 𝑥 and 𝑦, or an integrating factor for a differential equation homogeneous. It 

seems that the results obtained in this work correspond to the results obtained in the classic case. 
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