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Abstract: In this study, the Flett potential spaces are defined and a characterization of these potential 

spaces is given. Most of the known characterizations of classical potential spaces such as Riesz, Bessel 

potentials spaces and their generalizations are given in terms of finite differences. Here, by taking wavelet 

measure instead of finite differences, a weighted wavelet-like transform associated with Poisson semigroup 

is defined. And, by making use of this weighted wavelet-like transform, a new “truncated" integrals  

are defined, then using these integrals a characterization of the Flett potential spaces is given. 
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1. Introduction 

The importance of weak-singular integral operators such as classical Riesz, Bessel and parabolic 

potentials and their various generalizations in harmonic analysis and its applications is well known. 

Producing inversion formulas for potentials is one of the important problems in potential theory. A number 

of approaches to this problem are known. The hypersingular integral technique, a very powerful tool for 

inversion of potentials, was introduced and studied by E. Stein [1], P. Lizorkin [2], S. Samko [3], [4], B. Rubin 

[5], [6] and many other. We refer the interested reader also to the papers [7]-[9] for various properties, 

generalizations and applications. 

Continuous wavelet transforms are an alternative approach to find inversion formulas of potentials and 

this approach has been defined by B. Rubin ([5], [10]) and developed by I. A. Aliev and B. Rubin [11], [12], I. 

A. Aliev and M. Eryigit [13]. 

The Bessel potentials , ( )npJ L and relevant function spaces 

( ) { : , ( )}n n
p pH f f J L were introduced by N. Aronszajn and K. Smith [14] and A. P. 

Calderón [15]. Parabolic Bessel potential spaces were defined by C. H. Sampson [16] and generalized by V. A. 

Nogin and B. Rubin [17]. Similarly, Riesz potential spaces were introduced by S. G. Samko [18]. Recently the 

wavelet type characterization of these spaces are introduced and studied by I. A. Aliev [19], S. Sezer and I. A. 

Aliev [20], [21]. 

The Flett potentials f  of a function f  are introduced by T. M. Flett in his fundamental paper [22]  

( ) ( ) (1 | |) ( ),( , 0).nf x x f x x
       

(1) 
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The purpose of this paper is to attempt to study and define space of Flett potentials. The rest of the artical 

organized as follows: Notations and auxilary lemmas introduced in Section 2. Main results proved in Section 

3.  

In this work, we define the space of Flett potentials  

( ) :   ,   , 0 , 1 .p pL f f L p  

Then using the weighted wavelet-like transform  

( )( , ) ( )( ) ( ) , ( , 0)t n
tw f x t e f x d x t

      

(2) 

Which is generated by a finite Borel measure  on [0, ) and the Poisson integral t f  , we 

obtain a characterization of the Flett potential spaces ( )pL . 

2. Notation and Auxiliary Lemmas 

( )np pL L  is the space of the measurable functions on n such that 

1/

| ( ) | , 1 .
n

p

p
pf f x dx p  

0 0( )nC C  is the class of all continuous functions on n  for which 
| |
lim ( ) 0
x

f x . The notation 

( )nS S  is the class of Schwartz test functions. It is well known that this class is dense in 

, 1pL p  and 0C . The Fourier transform of a function 1( )nf L is defined by 

.
1 1( ) ( )( ) ( ) , . ,   , .

n

ix n
n nf x Ff x e f d x x x x

    

(3) 

The inverse Fourier transform is defined by  

1( )( ) (2 ) ( )( ).nF f Ff  

The action of a distribution f as a functional on the test function will be denoted by ( , ).f  For a 

locally integrable function f , ( , )f  is defined by  

( , ) ( ) ( ) ,
n

f f x x dx  

Provided that the last integral is finite for every .   

The Flett potential of order  is defined by (1), has the following convolution type representation:  

( )( ) ( )( ) ( ) ( ) ,
n

f x f x y f x y dy

      

(4) 

where ( )( ) (1 | |)F x x . The kernel ( )y is as follows  
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| |

2 ( 1)/2

0

1
( ) | | ,

( ) (1 )

s y
n

n
n

s e
y y ds

s
      

(5) 

With ( 1)/2( ) ( ) / ( 1) / 2( )n
n n . 

It is not difficult to show that the kernel ( )y has the following properties (see also: [22], [4]). 

(a) If 0 n , then  

( ) ( ) | | | | 0asn
ny c y y  

and  

1
( ) log | | 0 ,a

( 1)! |
s

|
n

n

c
y y

n y
 

where  

( 1)/2 ( 1)/2

( 1) / 2 ( ) / 2 ( 1
a

) / 2
( ) ;

2
nd

( )
n nn n

n n
c c  

(b) For all 0   

1( ) | | | | ;n
ny c y as y  

(c) 1L  and 1 1  for all 0.   

From (c) it follows that  

, 0 , 1 .p pf f p
      

(6) 

If we use (5) and the Poisson integral t f , we obtain the following equality for the Flett potential: 

1

0

1
( ) ( ) ,

( )
t

tf x t e f x dt

       

(7) 

where , (1 )pf L p  and  

( ) ( , ) ( ) , 0 ,
n

n
t f x P y t f x y dy t x

      

(8) 

is the Poisson integral with the Poisson kernel ( , )P y t , defined by  

( 1)/22 2 ( 1)/2

( 1) / 2
( , ) , .

(| | )
n

n nn

c t n
P y t c

y t      

(9) 

The following lemma gives some properties of the Poisson integral t f  which will be used later. 

Lemma 2.1 [5] Let , 1pf L p  and t f  be as in (8). Then 

R

(a) | |( , ) 1, ( (., )) ( ) , 0 ;
n

t yP y t dy P t y e t

     

(10) 
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(b) ;t p pf f

         
(11)

 
(c) /sup | ( )( ) | , 1 , ( , ) ;n p

t p
x

f x ct f p c c n p

     

(12)

 

(d)
0

sup | ( )( ) | ( )( ) (  is the Hardy-Littlewood maximal function) ;t
t

f x Mf x Mf

  

(13) 

(e) ( ( ))( ) ( )( ), 0 , 0,t tf x f x t
     

(14) 

(f)
0

lim ( )( ) ( ) ,t
t

f x f x
        

(15)

 

where the limit is interpreted in pL -norm and pointwise a.e.. For 0f C the convergence is uniform on

n . 

Definition 2.2 Let  is a signed Borel measure on [0, )  if  

0

| | ( ) | | ( )  and ( ) ( ) 0d d

    

(16) 

Then  is called a wavelet measure. 

Definition 2.3 The weighted wavelet-like transform of pf L  is defined by 

( )( , ) ( )( ) ( ), ( , 0)t n
tw f x t e f x d x t

      

(17) 

where  is a finite Borel measure on [0, ) , ([0, )) 0  and t f  is the Poisson integral. 

Owing to (15), it is assumed that 
0

( )( ) ( )t
te f x f x  and therefore  

(0, )

( )( ) ( ) ( )( ) ( ) {0}. ( ) .t t
t te f x d e f x d f x

     

(18) 

Furthermore, by (12) 

( )( , )   ,
pp

w f t f  

where 
[0, )

| | ( )d . 

Lemma 2.4 [23] Let { } , 0T , be a family of linear operators, mapping ( ), 1n
p pL L p  

into the space of measurable functions on n . Define T f  by setting  

0
( )( ) sup | ( )( ) | , .nT f x T f x x  

Suppose that there exists a constant 0c  and a real number 1q  such that  

{ :| ( )( ) | }

q
pc f

meas x T f x t
t
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For all 0t  and pf L  . 

If there exists a dense subset  of pL  such that 0lim ( )( )T g x  exists and is finite a.e. whenever

g  then for each pf L , 0lim ( )( )T f x  exists and is finite a.e.. 

Lemma 2.5 [10] Let  be a finite Borel measure on , and let 1 1( ) ( )( )k s s I s , where 

1

0

1
( )( ) ( ) ( )

( 1)

s

I s s t d t

       

(19) 

is the Riemann-Liouville fractional integral of order 1  of the measure . Let further, 0Re , 

and let  satisfy the following conditions:  

(i)

0

( ) 0 , 0,1,...,[ '] (the integer part of ');jt d t j

 

(ii)

1

| | ( ) for some '.t d t  

Then 

1

1

( ) if 0 1 ,
( ) .

( ) if 1 , min{ ,1 [ ] } 0

O s s
k s

O s s
 

Furthermore, if 
0( ) ( )tt e d  is the Laplace transform of , then  

,1
0 0

( )
( )

t
k s ds dt k

t
        

(20) 

where 

1

0
,

( 1)

! 0

( ) ( )  ,
.

ln ( ) if 

t d t if
k

t t d t
      

(21) 

The following theorem gives an inversion formula for w f , defined in (17). 

Theorem 2.6 [24] Let , 0f  be the Flett potentials of 
pf L . Suppose that  is a finite Borel 

measure on  satisfying  

(a)

1

| | ( ) ;t d t for some

      

(22) 

(b)

0

( ) 0 , 0,1, , ( [ ] is the integer part of ).kt d t k m m

    

(23) 

Then 

,
0

0

( , ) lim ( , ) ( ) ,
dt dt

t w f x t t w f x t k f x
t t

    

(24) 
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where the constant ,k  is defined as (21). 

The limit in (24) is understood in pL -sense and pointwise a.e. for 1 p . If 0f C , the 

convergence is uniform on n . 

Proof. Let ,f  ,pf L 1 / .p n  Then 

0 0
(7)

1

0 0
(14)

1

0 0

1

0 0

( , ) ( ) ( ) ( ) ( )

1
( ) ( )

( )

1
( ) ( )

( )

1
( ) ( ) ( ) ,

( )

t t

t

t

w x t f x d f x d

d f x d

d f x d

d t f x d

    

(25) 

where 
, 0

0, 0.

s if s
s

if s
  

We introduce ``truncated" integrals  as follows: 

1( ) ( , ) .x t w x t dt

       

(26) 

By making use of (25), (26) and Fubini's theorem, we have 

1 1

0 0
/ / 1

1 1

0 0
/ 1

1 1

0 0 1

1
( ) ( ) ( ) ( )

( )

1
( ) ( )

( )

1
( ) ( ) .

( )

x t dt d t f x d

f x d d t t dt

f x d d t t dt

 

If we apply the formula (cf. [25], formula no: 3.238(3)) 

1 1

1

( ) 1
( ) ( 1) ,  ( 1)

(1 )

s

t s t dt s s
s

 

Then 

0 0 0

1 1
( ) ( )( ) ( ) ( ) ( ) ( ) ,

(1 )
x f x d d f x K d

   

(27) 

where 11
0

( ) ( ),K I  and 

1

0
0

1
( ) ( ) ( )

(1 )
I d  

is the Riemann-Liouville integral of the measure .  By Lemma 1 from [10], conditions (22) and (23) imply 
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that ( )K  has a decreasing integrable majorant and ,
0

( ) .K d k Here ,k is defined by (21). 

By (27)  

,

0

( ) ( ) ( ) ( ) ( ) ,f x k f x f x f x K d  

and therefore, 

,

0

| ( ) | .
pp

f k f f f K d  

By making use of the Lebesgue convergence theorem and formula (15) gives 

, 0  as  0,  1 .
p

f k f p
     

(28) 

For 0pf L C  the proof is similar and based on Lemma 2.1.(f). The proof of the pointwise (a.e.) 

convergence is based on the maximal function technique. More precisely, from (27) and (13) we have 

0
0

( ) sup ( )( ) | ( ) | ( )( ),t
t

f x f x K d c Mf x  

and therefore 

0
sup ( ) ( )( ),   ( ) 0.f x c Mf x c c

      
(29) 

Thus, the maximal operator 

0
( ) sup ( ) .f x f x  

is weak ( , ),p p  1 /p n . Then, by Theorem 3.12 from [23] it follows that ,( )( ) ( )T f x k f x  as 

0  for almost all .nx   

3. Main Results 

In this section we define Flett potential spaces ( )pL  and give a characterization of these spaces by 

using the weighted wavelet-like transform w f . 

Definition 3.1 Let 0  and 1 .p  The spaces ( )pL  of Flett potential are defined as 

follows:  

( ) :   ,   .p pL f f L  

The norm of ( )pf L  is defined by 
( )pL p

f , which makes ( )pL  a Banach space. 

Theorem 3.2 Let 0,  1 p  and 0.  Then  

0
( ) sup .p p p

f L f L and f  

Proof. We use some ideas from [5]. Suppose that ( ).pf L  Then for some ,pL f . Since 
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0{ }  converges in pL norm to ,k  (see (29)), there exists 0c such that 

0
sup .

pp
c  

Conversely, let pf L  and 
0

sup .
p
f  Firstly we show that f  for some .pL  Since 

the space ( )nS S  is dense in pL , it is sufficient to show that 

, ,f w w
          

(30) 

For some pL  and all w S . We use the following equality for the convolution-type operators: 

, , _ , , , and _( ) ( ) .h w h w w S h S x x
    

(31) 

Since the operators  and  are the convolution-type operators with the radial kernels, it follows 

from (31) that 

a) , ,g w g w
   

b) , ,g w g w
    

(32) 

For all pg L  and .w S  By the Banach-Alaoglu theorem, the condition 
0

sup
p
f  yields that 

there exist a function pL  and a sequence 0k , such that 

, , 0,
k

kf w w as
       

(33) 

For all ,qw L  1 / 1 / 1q p  (in particular, for all w S ). For this function pL  and any 

Schwartz function w  we have  

(33)(32) ) (32) )

0 0
, , lim , lim , .

kk k

a b

w w f w f w
 

That is  

0
, lim , , .

kk

w f w w S
      

(34) 

Let us show that 

,
0

lim , ,
kk

f w f k w
        

(35) 

where ,k  is defined as (20). The Hölder inequality yields  

, , ,
1 1

, , , , 1.
k k k

p
q

f w f k w f w k w f w k w
p q

 

From (28), the right hand side of the last expression goes to zero as 0.k  Hence, (35) is true and 

therefore, by (34) we get  

,, , , .w f k w w S  
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The latter equality shows that f , where 1
, , pk L , and therefore ( )pf L . The 

proof is completed. 

Remark 3.3 Examples of wavelet measures, which satisfy the conditions of Theorem 3.2 (with , 0)k , 

are the following: 

1. Let 
0

( 1)
l l

j
j

j
j

 , where ( )j j s  denotes the unit Dirac mass at the point s j , i.e. 

, ( )j j  , and l  is a fixed integer. It is well known that (see [4])  

00

( ) ( 1) 0 , 0,1, , 1.
l

k j k

j

l
s d s j k l

j
 

On the other hand  

00

( ) ( ) ( 1) (1 ) ,
l

ts j tj t l

j

l
t e d s e e

j
 

and therefore, by (20),  

1 1
,

0 0

( ) (1 ) 0.t lk t t dt t e dt  

2. Let l  be a fixed integer and 1( ),h s s be a Schwartz test function such that 

( )(0) 0, 0,1,2, ,kh k l  and 0 ( ) 0ls h s ds  (e.g. 
2 21/( ) , (0) 0 ;s sh s e h  such 

functions are called the Lizorkin test functions). We set ( )( ) ( ) , ( 0).ld s h s ds s  The integration 

by parts shows that  

( )

0 0

( ) ( ) 0 , 0,1, , ; ( [ ]),k k ls d s s h s ds k m m  

And therefore, the conditions (22) and (23) are fulfilled. Further, integrating by parts, we obtain  

( )

0 0 0

( ) ( ) ( ) ( ) .ts ts l l tst e d s e h s ds t e h s ds  

Now after simple calculations, we have  

1 1
,

0 0 0

1

0 0 0

( ) ( )

( ) ( ) ( ) 0.

l ts

l ts l

k t t dt t e h s ds dt

h s t e dt ds l h s s ds

 

4. Conclusion 

Most of the known characterizations of potential spaces (for example Riesz, Bessel potentials space) and 

their generalizations are given in terms of finite differences ([3]-[5]). In the "wavelet language" finite 

differences are replaced by wavelet measures. So, in this study flett potentials space is defined and a 

characterization of this space is given by making use of wavelet measure. 
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