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Abstract: Recently, there are many interested studies including various families of multiple hypergeometric 

functions and extended hypergeometric functions. Here, we will study on extended multivariable fourth 

type Horn functions which are both extended and multiple hypergeometric functions. In this article, we 

establish some generating functions for the extended multivariable fourth type Horn functions and then 

obtain a family of multilinear and multilateral generating functions for each of them. We also give special 

cases of the results presented in this paper. 
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1. Introduction 

The extended multivariable hypergeometric functions (extensions of Appell and Lauricella functions) are 

generalized with two extra parameters and the extended beta function with  
0N

( ; )l l
z


  (see [1]). 

Using the same method, the extended fourth type Horn, the extended multivariable fourth type Horn 

and the extended multivariable hypergeometric functions were defined in our recent papers [2], [3]. 

In this study, the extended fourth type Horn and multivariable fourth type Horn functions, which 

introduced below, has been used for obtaining new generating functions. 

Definition 1.1. Let a function   
0N

( ; )l l
z


   be analytic within the disk  z R     (0 )R    and 

let its Taylor-Maclaurin coefficients be explicitly denoted by sequence   
0Nl l




 . Suppose also that the 

function   
0N

( ; )l l
z


   can be continued analytically in the right half-plane  Re( ) 0z    with the 

asymptotic property given as follows [1]: 
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for some suitable constants  M0   and  w   depending essentially on the sequence   
0Nl l




 . 

The extended multivariable fourth type Horn functions are defined as follows (see [2]): 
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  , min Re( ),Re( ) 0 ,p q 
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where the extended beta function 
  N0

, ( , )
l l

K

p qB    is given by (see [1]) 
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When  
( )

( )
,l

ll




      and  0p q    in (2), then (2) reduces to multivariable Horn functions 

[4]. 

If we take 1, 2k r  , in (2), then function (2) reduces to extended fourth type Horn functions defined 

by [2]: 
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          (3) 

When 
( )

( )
,l

ll




      and  0p q   in (3), then (3) reduces to Horn functions [5], [6]. 

The aim of this article is to obtain generating functions for the extended multivariable fourth type Horn 

functions. Then, we derive various families of multilinear and multilateral generating functions for these 

functions and their special cases are also given. 

2. Generating Functions 

In this section, we give two generating functions for the extended multivariable fourth type Horn 

functions. 

Theorem 2.1. We have the following generating function for the extended multivariable fourth type Horn 

functions given by (2): 
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where C  and 1.t   

Proof. Let T denote the first member of assertion (4). Then, 
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which completes the proof. 

Corollary 2.1. If we choose 1k  , 2r   in Theorem 2.1, we have the following relation for the extended 

fourth kind Horn functions: 
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where  C  and 1.t   

In the next theorem, let 
  N0

; ,l l
K p q

m


   denote, the following special functions: 
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Theorem 2.2. We have the following generating function for the extended multivariable fourth type Horn 

functions given by (2): 
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Proof. Let 𝑇 denote the first member of assertion (5). Then, 
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By using Theorem 2.1, we observe 
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which completes the proof. 

3. Multilinear and Multilateral Generating Functions  

In this section, we derive several families of bilinear and bilateral generating functions for the extended 

multivariable fourth type Horn functions by using the similar method considered in [2], [3], [7]. 

Theorem 3.1. Corresponding to an identically non-vanishing function 
1( ,..., )ry y  of  r  complex 

variables 1,..., ry y  ( )r N   and of complex order ,  let 
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Then, for every nonnegative integer ,m  we have 
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provided that each member of (6) exists. 

Proof. For convenience, let 𝑆 denote the first member of the assertion (6). Then, we may write that  
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which completes the proof. 

In a similar manner, we also get the next result, immediately. 

Theorem 3.2. Corresponding to an identically non-vanishing function  
1( ,..., )sy y   of  s   complex 

variables 1,..., sy y  ( )s N  and of complex order , let 
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Then, for ,b N  we have 
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provided that each member of (7) exists. 

4. Special Cases 

In this section, we will show the applications for the theorems given above. When the multivariable 

function
1( ,..., )sy y , 0 ,l N  s N  is expressed in terms of several simpler functions of one and 

more variables, we shall be led to an interesting class of multilateral generating functions for the extended 

multivariable fourth type polynomials considered and, of course, for the extended fourth type Horn 

functions when 1, 2k r  . We first set 
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(8) 

We are thus led to the following result which provides a class of bilateral generating functions for the 

extended multivariable fourth type Horn functions and the extended multivariable hypergeometric 

functions. 

Corollary 4.1. If 
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provided that each member of (9) exists. 
Remark 4.1. Using the generating relation (8) for the extended multivariable hypergeometric functions and 

getting 
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      in Corollary 4.1, we find that  
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On the other hand, we set  
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      in 

Theorem 3.2, we have the bilinear generating function relations for the extended multivariable fourth type 

Horn functions. 

Furthermore, for every suitable choice of the coefficients 𝑎𝑖  (𝑖 ∈ 𝑁0),  if the multivariable 

function Ω𝜇+𝜓𝑙(𝑦1, … , 𝑦𝑠) 𝑠 ∈ 𝑁 is expressed as an appropriate product of several simpler functions, the 

assertions of Theorems 3.1 and 3.2 can be applied in order to derive various families of multilinear and 

multilateral generating functions for the extended fourth type Horn functions.  

5. Conclusion 

When we study on sequences of special functions, it is possible to analyze the following situations with 

the help of generating functions: 

 finding an exact formula for the members of sequence, 

 finding a recurrence formula, 

 finding an asymptotic formula. 

In this article, we established some generating functions for the extended multivariable fourth type Horn 

functions and obtained a family of multilinear and multilateral generating functions for each of them. The 

method used here enables us to obtain generating function relations for other sequences of special 

functions. 
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