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Abstract: Notions of strong and weak transcendental numbers are introduced. Consequently, proofs of 

several longstanding conjectures about the transcendence of the numbers such as 𝑒 ± 𝜋,
𝜋

𝑒
, 𝑒𝑒 , 𝜋𝑒 , 𝜋√2 , 𝑒𝜋2

 

are obtained. Direct proof of the algebraic independence of the numbers 𝑒 and 𝜋 is derived. 
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1. Introduction 

A complex number α is called algebraic if there is a nonzero polynomial 𝑝(𝑧) with rational coefficients 

such that 𝑝(𝛼) = 0. A number that is not algebraic is called transcendental. Springing from such diverse 

sources as the ancient Greek question concerning the squaring of the circle, the researches of Liouville [1] 

and Cantor [2], Hermite's investigations on the exponential function [3] and the seventh of Hilbert's famous 

list of 23 problems [4], the study of transcendental numbers has developed into a fertile and extensive 

theory, enriching widespread branches of mathematics. Baker [5] gave a comprehensive account of the 

major discoveries in the field. Notwithstanding its long history and its major advances in recent years, the 

theory of transcendental numbers is far from being complete and several famous long-standing problems 

remain open. 

The first constructed transcendental number is the Liouville's constant ∑ 10−𝑛!∞
𝑛=0  [1]. Hermite (1873) 

and Lindemann (1882) were able to prove to respectively show that 𝑒 and π are transcendental [6]. The 

proof of the transcendence of a specific number is usually beset by considerable difficulties, and such 

results are still few and far between. Despite many efforts, the transcendence of numbers such as 𝑒 ± 𝜋, 

𝑒𝜋 , 𝜋/𝑒 , 𝑒𝑒 , 𝜋𝑒  , 𝜋√2 , 𝑒𝜋2
, ln  𝜋, conjectured for long time to be true, remains widely open problem. 

Another major problem in transcendence theory is showing that a specific set of numbers is algebraically 

independent. The first result on algebraic independence of transcendental numbers was proved in late 19th 

century by Lindemann and Weierstrass [7]. It states that whenever 𝑎1, … , 𝑎𝑛 are algebraic numbers that 

are linearly independent over the field of rational numbers ℚ , then 𝑒𝑎1 , … , 𝑒𝑎𝑛  are algebraically 

independent over ℚ. It is often used to prove that some sets are algebraically independent over the 

rationals. It is known for example that 𝜋 and 𝑒𝜋 are algebraically independent (see for example [8], [9]). 

However, it remains an open problem to prove that 𝜋 and 𝑒 are algebraically independent over the field of 

rational numbers. 

In Section 2 of the present paper, we introduce a very natural way of classifying complex numbers. In 
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Section 3, we generalize the main ideas in the Baker's proof of the Lindemann-Weierstrass Theorem and 

derive new criteria for establishing the transcendence of numbers. In Section 4, we further classify the 

complex numbers as weak or strong. In Section 5, we discuss some linear independence results. Along the 

way, we obtain proofs of several longstanding conjectures in transcendence of numbers. 

2. A Classification of Transcendental Numbers 

As usual,  ,  ,ℚ,  and   denote respectively the sets of, respectively all natural numbers, all integers, 

all rational numbers, all real numbers and all complex numbers. We also denote by ℚ̅ the set of algebraic 

number over the field ℚ . The definition of transcendental number can be restated as follows. 

Definition 1.  A complex number 𝑐 is transcendental if every finite family of distinct non-negative 

integer powers of 𝑐 is ℚ-linearly independent. 

The non-negative condition in the above definition can be removed. 

Theorem 2.  A complex number 𝑐 is transcendental if and only if every finite family of distinct integer 

powers of 𝑐 is ℚ-linearly independent. 

Proof. Clearly, if 𝑐  satisfies the condition, then 𝑐  is transcendental. Conversely, assume that 𝑐  is 

transcendental and that there exist 𝑛0, … , 𝑛𝑝  distinct integers and rational numbers 𝑏0, … , 𝑏𝑝 not all 

zeros such that ∑ 𝑏𝑘𝑐
𝑘 = 0

𝑝
𝑘=0 . Rearranging if necessary, we assume that 𝑛0, … , 𝑛𝑝−𝑞 are the negative 

integers where 𝑞 ≤ 𝑝. Then  

 

∑ 𝑏𝑘𝑐
𝑛0⋯ 𝑛𝑝−𝑞𝑛𝑘

−1
𝑐𝑛𝑘

𝑝−𝑞

𝑘=0

+ ∑ 𝑏𝑘𝑐
𝑛0⋯ 𝑛𝑝−𝑞𝑐𝑛𝑘

𝑝

𝑘=𝑝−𝑞+1

= 0. 

 

The transcendence of 𝑐 implies that 𝑏𝑘𝑐
𝑛0⋯ 𝑛𝑝−𝑞𝑛𝑘

−1
= 0 for 𝑘 = 0,1, … , 𝑝 − 𝑞 and 𝑏𝑘𝑐

𝑛0⋯ 𝑛𝑝−𝑞 = 0 for 

𝑘 = 𝑝 − 𝑞 + 1,… , 𝑝. Thus 𝑏𝑘 = 0 for all 𝑘 's. Contradiction. □ 

We further notice that if 𝑐 is a zero of ∑ 𝑏𝑘𝑥
1/𝑛𝑘

𝑝
𝑘=0 . where 𝑛0, … , 𝑛𝑝 are distinct positive integers, then 

𝑐1/(𝑛1 𝑛2 ...𝑛𝑝)  is a zero of the polynomial ∑ 𝑏𝑘𝑥
𝑛1 𝑛2 ...𝑛𝑝/𝑛𝑘𝑝

𝑘=0  . That is, 𝑐1/(𝑛1 𝑛2 ...𝑛𝑝)  , and hence 𝑐 =

 𝑏𝑛1𝑛2 ...𝑛𝑝 , is an algebraic number. We obtain the following characterization of transcendental numbers. 

Theorem 3.  A complex number 𝑐 is a transcendental number if and only if every finite family of distinct 

rational powers of 𝑐 is ℚ-linearly independent. 

Baker's formulation (see e.g. [5], [10]) of the Lindemann-Weierstrass Theorem states that:  

Theorem 4. (Lindemann-Weierstrass) Every finite family of distinct algebraic powers of the number e is 

ℚ̅-linearly independent. 

For a proof, see [5]. In the transcendental number theory, such a theorem proves to be very useful in 

establishing the transcendence of numbers. It particularly implies that the number 𝑒 has a property that is 

stronger than the transcendence. Such a fact naturally prompts us to introduce the following classification. 

Definition 5.  We say that a complex number 𝑥 is a strong transcendental number if every finite 

family of distinct algebraic powers of 𝑥 is ℚ̅-linearly independent. Otherwise, we say that the number 𝑥 

is a weak transcendental number. 

It is clear that strong transcendental numbers are transcendental, and that Theorem 4. establishes the 

fact that the number 𝑒 is a strong transcendental number. The following theorem immediately follows.  

Theorem 6.  Let 𝑥 be a complex number. Then the following statements are equivalent: 

1. 𝑥 is a strong transcendental number; 
2. Every nonzero algebraic power of 𝑥 is a strong transcendental number; 
3. Every ℚ̅-linear combination of distinct algebraic powers of 𝑥 is a transcendental number. 
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Proof. Clearly, we have 3. ⇒ 2. ⇒ 1. . To see 1. ⇒ 3. , let  = ∑ 𝑏𝑘𝑥
𝛽𝑘

𝑝
𝑘=0  be a ℚ̅ -linear combination of 

distinct algebraic powers of 𝑥. Then for any distinct non-negative integers 𝑛0, … , 𝑛𝑚 and any rational 

numbers not all zero 𝑟0 , … , 𝑟𝑚, it is quickly seen that the expression  

 

∑𝑟   
𝑛 

𝑚

 =0

= ∑𝑟  (∑ 𝑏𝑘𝑥
𝛽𝑘

𝑝

𝑘=0

 )

𝑛 𝑚

 =0

 

 

is a ℚ̅-linear combination of distinct algebraic powers of 𝑥 and therefore cannot be equal to 0 since 𝑥 

is a strong transcendental number. Thus   is transcendental. The proof is complete. □ 

Some immediate consequences are the strong transcendence of numbers like sin 𝛼,   s 𝛼 ,   n 𝛼, sin  𝛼, 

  s  𝛼 ,   n  𝛼 , l   𝛼 whenever 𝛼 is a nonzero algebraic number. And generally, the inverse functions of 

all the above listed functions are strong transcendental for all 𝛼  ℚ̅  *0,1+. 

3. Strong Transcendental Numbers 

By a transcendental function, we mean an analytic function that does not satisfy a polynomial equation. 

The proofs of the transcendence of e and 𝜋 are quite similar. They both revolve around an analytic part 

and an algebraic part. The analytic part relies on the so-called Hermite's identity that we can generalize as 

follows. 

Lemma 7.  Let   be a transcendental function satisfying  (0) = 1. Let 𝑓 be a complex polynomial 

with degree  . For    , define  

 

 (  , 𝑓 )  ∫   ( −  )𝑓( )𝑑 
 

0

 

 

where the integral is along the line segment from 0 to u. Then  

  

 (  , 𝑓 ) =  ( )∑ 𝑓
( )(0)  0 − ∑ 𝑓

( )( )  0 .                         (1) 

 

Proof. Using integrating by parts, one has  

 

 (  , 𝑓 ) = ∫   ( −  )𝑓( )𝑑 
 

0

= ∫ 𝑓( )𝑑(− ( −  ))
 

0

= −𝑓( ) +  ( )𝑓(0) +  (  , 𝑓 ). 

 

The identity (1) is obtained by repeating this process  − 1 times. □ 

We need the following simple estimate. 

Lemma 8. Let   be a transcendental function. Let 𝑓 be a complex polynomial and let  ( , 𝑓) be given 

by (1). Then   ( , 𝑓) ≤           , 0,  -  
 ( −  )    

    , 0,  -
 𝑓( ) . 

Our next result generalizes the Lindemann-Weierstrass Theorem 4. 

Theorem 9.  Let   be a transcendental function satisfying  (0) = 1. Then for distinct 𝑎1, … , 𝑎𝑛  ℚ̅  

*0+, and for 𝑏1, … , 𝑏𝑛  ℚ̅ not all zero, 𝑏1  (𝑎1) + ⋯+ 𝑏𝑛  (𝑎𝑛)    0. 

Proof. We leave out many of the technical details as they are the same exactly as in the Baker's proof of 

the Lindemann-Weierstrass Theorem [5]. 

We assume that for some distinct 𝑎1, … , 𝑎𝑛  ℚ̅  *0+, and 𝑏1, … , 𝑏𝑛  ℚ̅ not all zero, we have 

𝑏1  (𝑎1) + ⋯+ 𝑏𝑛  (𝑎𝑛) =  0. We shall derive a contradiction. It is enough to consider the 𝑏  rational 
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integers. We can then choose a positive integer   such that  𝑎1, … ,  𝑎𝑛 and  𝑏1, … ,  𝑏𝑛 are algebraic 

integers. For  =  1,2,… , 𝑛 and for 𝑝 large prime number, consider the polynomial 𝑓 (𝑥) =  𝑛𝑝(𝑥 −

𝑎  )
−𝑝(𝑥 − 𝑎1 )

𝑝 ⋯(𝑥 − 𝑎𝑛 )𝑝. Then  𝑓 (𝑥) ≤    𝑛𝑝 (𝑛𝑛+1 )𝑝 and by the Hermite's identity (1) 

 

 ( , 𝑓 ) =  ( )∑𝑓 
( )(0)

  0

− ∑𝑓 
( )( )

  0

.  

 

The sums in the above expression are finite since 𝑓  is a polynomial. Let    ∑ 𝑏𝑘 (𝑎𝑘, 𝑓 )
𝑛
𝑘=1 . Then  

 

  = ∑ 𝑏𝑘

𝑛

𝑘=1

( (𝑎𝑘)∑𝑓 
( )(0)

  0

− ∑𝑓 
( )(𝑎𝑘)

  0

) = − ∑ 𝑏𝑘 ∑𝑓 
( )(𝑎𝑘)

  0

𝑛

𝑘=1

  

 

where the last equality follows from our assumption that ∑ 𝑏𝑘 (𝑎𝑘) = 0𝑛
𝑘=1 .  

One then notices that   1 ⋯ 𝑛   is an integer satisfying ((𝑝 − 1)!)
𝑛

≤   1 ⋯ 𝑛  ≤  𝑐𝑑𝑛𝑝 for some 

constants 𝑐 and 𝑑 independent of 𝑝. The estimates are inconsistent for sufficiently large 𝑝. Such a 

contradiction proves the theorem.  

Example 10.  Theorem 9 promptly implies the following strong transcendence results: 

1) 𝑒𝑎 is strong transcendental for every 𝑎  ℚ̅  *0+: in Theorem 9, take  (𝑧) = 𝑒𝑎𝑧.  

2) 𝜋𝑎 is strong transcendental for every 𝑎  ℚ̅  *0+: in Theorem 9, take  (𝑧) = 𝜋𝑎𝑧.  

3) log a is strong transcendental for every 𝑎  ℚ̅  *0+: and for any determination the logarithm: in 

Theorem 9, take  (𝑧) = (l  𝑎)𝑧.  

In particular 𝜋√2 is a strong transcendental number. It is plain that (1.) in the above example is a 

restatement of the Hermite-Lindemann Theorem [4], [11]. The Six Exponentials Theorem [12] implies that 

at least one of the numbers 𝑒𝑒 , 𝑒𝑒2
, 𝑒𝑒3

, 𝑒𝑒4
 is    ns  n  n  l. By considering  (𝑧) = 𝑒𝑧𝑒 

, it follows that: 

Corollary 11.  The numbers 𝑒𝑒 
 are strong transcendental numbers for all 𝑎  ℚ̅.  

Likewise, by considering  (𝑧) = 𝑒𝑧𝜋 
, we have 

Corollary 12.  The numbers 𝑒𝜋 
are strong transcendental numbers for all 𝑎  ℚ̅  *1+.  

In particular, 𝑒𝜋2
 is a strong transcendental number. We are also now able to confirm the 

transcendence of the number 𝜋𝑒. Indeed, taking  (𝑧) = 𝜋(𝑎+𝑒 )𝑧, where 𝑎, 𝑏  ℚ̅ in Theorem 9, we have 

Corollary 13.  The numbers 𝜋(𝑎+𝑒 ) where 𝑎, 𝑏  ℚ̅, are strong transcendental numbers. 

4. Weak and Strong Complex Numbers 

In what follows, 𝑎  = 𝑒 log𝑎 , where 𝑒𝑧 = ∑ 𝑧𝑛/𝑛!∞
𝑛=0   and l  𝑎 = l   𝑎 +     𝑎. The argument of 

𝑎 is determined only up to a multiple of 2𝜋. Let us denote by 𝒢 the set of all Gel'fond-Schneider 

transcendental numbers, that is to say,  = *𝑎  𝑎  ℚ̅  *0,1+, 𝑏  ℚ̅  ℚ+ . The Gel'fond-Schneider 

Theorem ([13], [14]) states that every element of   is a weak transcendental number. In fact, our next 

result shows that the class of weak transcendental numbers coincides exactly to the class of 

Gel'fond-Schneider transcendental number. 

Theorem 14. A transcendental number 𝜏 is strong if and only if 𝜏 ∉  . 

Proof. Let 𝜏   . Since 𝜏
1

 − 𝑎𝜏0  = 0 is a non-trivial 0 linear combination, we see that 𝜏 is not strong. 

Conversely, if 𝜏 ∉   and is a transcendental number, then the function  (𝑧) = 𝜏𝑧  = 𝑒𝑧 log 𝜏  is a 

transcendental function with  (0) = 1. By Theorem 9 for distinct 𝑎1, … , 𝑎𝑛  ℚ̅  *0+, and for 𝑏1, … , 𝑏𝑛  

ℚ̅ not all zero, we have 𝑏1 𝜏
𝑎1 + ⋯+ 𝑏𝑛 𝜏𝑎𝑛    0 hence 𝜏 is a strong transcendental number. □ 
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We introduce the following definition. 

Definition 15.  We say that a complex number is weak if it is either an algebraic number or a 

Gel'fond-Schneider transcendental number. A complex number is said to be strong if it is not weak. We 

denote by 𝒲 the set of all weak complex numbers and by 𝒮 its complement. 

By our definition  = ℚ̅   . It is easy to see that  = *𝑎  𝑎, 𝑏  ℚ̅+. It follows from Theorem 14 

that the class of strong complex numbers coincides exactly to the class of strong transcendental numbers. 

Theorem 16. A complex number is strong if and only if it is a strong transcendental number. 

Thus, a complex number is either a weak complex number or a strong transcendental number. It is also 

worth noticing that since the set   of weak transcendental numbers is countable, so is the set  . 

Therefore most (uncountably many) complex numbers are strong complex numbers. 

Consider the set   = *𝑏 l  𝑎  𝑎  ℚ̅  *0,1+, 𝑏  ℚ̅  ℚ +.  If    , then 𝑒    , and therefore 𝑒   

is weak. It turns out that the converse of such a statement holds. 

Theorem 17. If ∉   , then the number 𝑒𝜏   .  

Proof. The result follows from Theorem 9 because if 𝜏 ∉  , then  (𝑧) = 𝑒𝜏𝑧 is a transcendental 

function such that  (0) = 1.  

We have already noticed that if 𝑎  ℚ̅  *0+, then 𝑒𝑎   . An immediate consequence of the Theorem 17 

establishes the following even stronger result: 

Corollary 18. Let 𝑎, 𝛽  ℚ̅  *0+. Then 𝑒𝑎𝛽
  .  

In particular, 𝑒𝑒𝜋
= 𝑒 −2𝑖

 is a strong transcendental number. 

Proof. We notice that for every 𝑎 , 𝛽  ℚ̅  *0+, 𝑎𝛽    𝛽  l  𝑎  because the left-hand side is a weak 

complex number while the right-hand side is a strong transcendental number (Example 10). It follows from 

Theorem 17 that 𝑒𝑎𝛽
 is a strong complex number.  

5. Linear Independence Results 

Many linear independence results can promptly be derived from our classification of transcendental 

numbers for certain pair of numbers.  

Theorem 19.  If 𝑎, 𝑏  ℚ̅  *0+, then the set *𝑒 , l  𝑎+ is ℚ̅-linearly independent. 

Proof. Assume that 𝑏1𝑒
 = 𝑏2  l  𝑎 = 0 for 𝑏1, 𝑏2  ℚ̅  *0+ . Then we have 𝑎 2/ 1 = 𝑒𝑒 

. This is a 

contradiction because 𝑎 2/ 1  is a weak complex number while according to Corollary 11, 𝑒𝑒 
  . □ 

As a corollary, we obtain a proof of yet another important conjecture, namely: 

Theorem 20.  The numbers 𝜋𝑒, 𝜋/𝑒 are transcendental. 

Proof. Assume that 𝜋𝑒± 1  = 𝑎 is algebraic. Then 𝜋 = 𝑎𝑒∓ 1 and 𝑒𝜋 = .𝑒𝑒∓ 1
/
𝑎

.  Theorem 17 implies 

that 𝑒∓ 1 ∉   . Thus 𝑒𝑒∓ 1
, and hence .𝑒𝑒∓ 1

/
𝑎

 is a strong transcendental number. This is a contradiction 

because 𝑒𝜋 is a weak complex number. □ 

Theorem 21.  If 𝑎, 𝑏  ℚ̅  *0+, then the set *𝜋 , l  𝑎+ is ℚ̅-linearly independent. 

Proof. Assume that 𝑏1𝜋
 = 𝑏2  l  𝑎 = 0 for 𝑏1, 𝑏2  ℚ̅  *0+. Then we have 𝑎 2/ 1 = 𝑒𝜋 

. This is a 

contradiction because 𝑎 2/ 1 is a weak complex number while according to Corollary 12, 𝑒𝜋 
  . □ 

Theorem 22.  If 𝑏  ℚ̅  *0+, then the set *𝜋, l  𝜋 + is ℚ̅-linearly independent. 
Proof. Assume that 𝑏1𝜋

 = 𝑏2  l  𝜋 = 0 for 𝑏1, 𝑏2  ℚ̅  *0+. Then we have 𝜋  2/ 1 = 𝑒𝜋. This is a 

contradiction since 𝜋  2/ 1 is strong transcendental number (Example 10) while 𝑒𝜋   . □ 

The statement of Theorem 4 implies in particular that finitely many distinct algebraic powers of the 

number 𝑒 form a finite family of distinct strong transcendental numbers. Our next result shows that 
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similar conclusion can be stated if in the theorem, one replaces the distinct powers of 𝑒 with just distinct 

strong transcendental numbers. Its proof uses the same line of ideas as the proof of the transcendence of 

either 𝑒.  

Theorem 23. If 𝜏1 , … , 𝜏𝑛  is a finite family of distinct strong transcendental numbers, then the set 
*1, 𝜏1 , … , 𝜏𝑛+ is ℚ̅-linearly independent. 

Proof. Assume to the contrary that  

 

𝑏0 + 𝑏1 𝜏1 + ⋯+ 𝑏𝑛 𝜏𝑛 = 0                             (2) 

 

where 𝑏0, … , 𝑏𝑛 are in ℚ̅ and not all 0. By removing all   for which 𝑏 = 0 , we may assume that all 

coefficients are different from zero. We also notice that if 𝑏  0, then one can multiply by 𝜏 
−1 to obtain 

equation with the same form as in (2). Hence, we may and do assume that 𝑏0  0. 

For a large prime number 𝑝       * 𝑏0 , 𝑛+, consider the polynomial 𝑓(𝑥) =  𝑥𝑝−1 (𝑥 − 1)𝑝 ⋯(𝑥 − 𝑛)𝑝. 

Then for  0  𝑥  𝑛 , we have  𝑓(𝑥) ≤ 𝑛3𝑝 . For  = 1,… , 𝑛 , let   (𝑓)  ∫ (𝑎 l  𝜏 )𝜏 
𝑎( − )𝑓( )𝑑 

 

0
. 

Integrating by parts, one has 

 

  (𝑓) = ∫ 𝑓( )𝑑 .− 𝜏 
𝑎(  −  )/

 

0

  = −𝑓( ) + 𝜏 
𝑎𝑓(0) +   (𝑓

 ). 

 

Iterating the above procedure, we have   (𝑓) = 𝜏 
𝑎  ∑ 𝑓 

( )(0)  0 − ∑ 𝑓 
( )( )  0 . The sums in the above 

expressions are finite since 𝑓 is a polynomial and we further have 

 

   (𝑓) ≤  ∫ |(𝑎 l  𝜏 )𝜏 
𝑎( − )𝑓( )| 𝑑 

 

0
 ≤    𝑎 l  𝜏  𝑒

 𝑎 log 𝜏𝑖  𝑛3𝑝.                (3) 

 

Define   𝑏1 1(𝑓) + ⋯+ 𝑏𝑛 𝑛(𝑓). Then we have 

 

 = ∑𝑏 ( 𝜏 
𝑎  ∑𝑓 

( )(0)

  0

− ∑𝑓 
( )( )

  0

)

𝑛

 =1

= − 𝑏0 ∑𝑓 
( )(0)

  0

− ∑𝑏 ∑𝑓 
( )( )

  0

)

𝑛

 =1

 

 

where the last equality follows from our assumption that ∑ 𝑏 𝜏 
𝑎𝑛

 =1 = −𝑏0. Note that the polynomial 𝑓 can 

be written as 𝑓(𝑥) = ± (𝑛!)𝑝𝑥𝑝−1 + 𝑐𝑝𝑥
𝑝 + 𝑐𝑝+1𝑥

𝑝+1 + ⋯  where the 𝑐𝑝 are integers and thus 

𝑓( )(0) = 0 f   𝑗  𝑝 − 1 ; 𝑓(𝑝−1)(0) = ±(𝑝 − 1)! (𝑛!)𝑝 is not divisible by 𝑝! for 𝑝  𝑛 and 𝑓( )(0) is 

an integer divisible by 𝑝! for 𝑗 ≥  𝑝.  

For 𝑘 = 1,… , 𝑛, 𝑓(𝑥 + 𝑘) is a polynomial of the form 𝑓(𝑥 + 𝑘) =  𝑑𝑝𝑥
𝑝 + 𝑑𝑝+1𝑥

𝑝+1 + ⋯  where 𝑑  

are integers. Thus 𝑓( )(𝑘) = 0 for 𝑗  𝑝 and 𝑓( )(𝑘) is an integer divisible by 𝑝! for 𝑗 ≥  𝑝. It follows 

that if 𝑝   𝑏0 ,   is a nozero integer divisible by (𝑝 − 1)! and (𝑝 − 1)! ≤    .  The inequalities in (3) 

imply    ≤ ∑  𝑏     (𝑓)  𝑛
 =1  ≤  𝑛3𝑝  ∑  𝑏    𝑎 l  𝜏  𝑒

 𝑎 log 𝜏𝑖 𝑛
 =1 . Such estimates are inconsistent for 

sufficiently large 𝑝 and the contradiction proves the theorem. □  

Corollary 24  If 𝜏1 , … , 𝜏𝑛 is a finite family of distinct strong transcendental numbers, then for any 𝑎  ℚ̅  
*0+, any ℚ̅-linear combination of the numbers 𝜏1

𝑎 , … , 𝜏𝑛
𝑎 a is a transcendental number. 

Proof. We first notice that 𝜏1
𝑎 , … , 𝜏𝑛

𝑎 are distinct strong transcendental numbers and by Theorem 23, any 

ℚ̅-non trivial linear combination 𝑏1 𝜏1
𝑎 + ⋯+ 𝑏𝑛 𝜏𝑛

𝑎  𝑏0 for any 𝑏0  ℚ̅ and must be transcendental.  

In particular, since both 𝑒 and 𝜋 are strong transcendental numbers, Corollary 24 proves the conjecture 
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about the transcendence of the numbers 𝑒 + 𝜋 and 𝑒 − 𝜋.  

Corollary 25. The numbers 𝑒𝑎 + 𝜋𝑎 and 𝑒𝑎 − 𝜋𝑎 for 𝑎  ℚ̅  *0+ are all transcendental numbers. 

Corollary 26. For any 𝑎, 𝑏  ℚ̅  *0+, the set *1, 𝑒𝑎, 𝜋  + is ℚ̅-linearly independent. In particular, any 
ℚ̅-linear combination of the numbers 𝑒𝑎, 𝜋  is a transcendental number. 

Proof. We notice that 𝑒𝑎, 𝜋  strong transcendental numbers and that 𝑒𝑎   𝜋  because if not we have 

𝑒
 

  =  𝜋 and 𝑒𝑒 / 
= 𝑒𝜋. This is a contradiction because 𝑒𝜋     while 𝑒𝑒 / 

  . We can apply then 

Theorem 23 to {𝑒𝑎, 𝜋 }.  

Corollary 26 provides a proof of the long-standing conjecture of the algebraic independence of the 

numbers 𝑒 and 𝜋.  
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