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Abstract: In this paper, we introduce the notion of orthogonal Z-contraction mappings and prove fixed 

point theorems for such contraction mappings in orthogonally metric spaces, which are generalizations of 

fixed point results for Z-contraction mappings in metric spaces. As an application, we apply our main results 

to show the existence of a unique positive definite solution of a nonlinear matrix equation. 
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1. Introduction 

The most well-known fixed point theorem is the Banach contraction principle (briefly, BCP) due to 

Banach [1]. After that, Ran and Reuring [2] established fixed point results on partially ordered metric 

spaces and also applied to the existence and uniqueness results of a solution for a nonlinear matrix 

equation. Especially, Gordji et al. [3] extended the BCP to the setting of an orthogonal set (briefly, O-set). 

They applied obtained results to prove the existence of a solution for a differential equation, which can not 

be applied by the BCP [1] and the results of Ran and Reurings [2]. 

In 2012, Khojasteha et al. [4] introduced a new control function namely a simulation function and defined 

a new contraction namely  -contraction as follows: 

Definition 1.1 ([4]). A function :[0, ) [0, )      is called a simulation function if it satisfies the 

following conditions:  

1( )  (0,0) 0;   

2( )  ( , )t s s t    for all , 0;t s   

3( )  if { }nt , { }ns  are sequence  in (0, )  such that lim lim 0n n
n n

t s
 

  , then  

 

limsup ( , ) 0.n n
n

t s



 

 
We denote the set of all simulation functions by  .   

Definition 1.2 ([4]). Let ( , )X d  be a metric space and   . A mapping is called a 

 -contraction mapping with respect to   if   
 

:T X X
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( ( , ), ( , )) 0d Tx Ty d x y   

for all , .x y X  

They showed that the class of  -contraction mappings can be expressed in various contractive classes in 

a simple and unified way and also established fixed point results for -contraction mappings in complete 

metric spaces. 

The aims of this work are to introduce the concept of orthogonal Z-contraction mappings with respect to 

simulation functions and establish fixed point theorems for such contraction mappings in orthogonal metric 

spaces. As an application, we apply our main results to consider the existence of a unique positive definite 

solution of a nonlinear matrix equation. 

2. Preliminaries 

Throughout this paper, we denote by X , ,  and 0  the nonempty set, the set of positive integers 

and the set of nonnegative integers, respectively. 

Now, we recall the concept of an orthogonal set (or O-set), some examples and some properties of the 

orthogonal sets as follows: 

Definition 2.1 ([3]). Let X  be a nonempty set and X X   be a binary relation. If   satisfies 

the following condition:  

 

0 0[( , )x y X y x     or 0( , )]y X x y   , 

 

then it is called an orthogonal set (briefly, O-set) and 0x  is called an orthogonal element. We denote this 

O-set by ( , )X  . 

Example 2.2 ([3]). Let  be the set of all peoples in the word. Define the binary relation  on by 

x y  if x   can give blood to y . If 0x  is a person such that his (her) blood type is O-, then we have 

0x y  for all y X . This means that is an O-set. In this O-set, 0x  (in definition) is not unique. 

Note that  may be a person with blood type AB+. In this case, we have 0y x  for all .y X  

Definition 2.3 ([3]).  Let ( , )X   be an O-set. A sequence  is called an orthogonal sequence 

(briefly, O-sequence) if  

 

1( , )n nn x x     or 1( , )n nn x x   . 

 
Definition 2.4 ([3]).  The triplet ( , , )X d  is called an orthogonal metric space if ( , )X   is an O-set 

and  is a metric space. 

Definition 2.5 ([3]).  Let  be an orthogonal metric space. Then a mapping is 

said to be orthogonally continuous (or -continuous) in x X if for each O-sequence  in  with 

nx x  as n  , we have nTx Tx  as n  .  Also,  is said to be -continuous on if  

is -continuous in each .x X  

Definition 2.6 ([3]).  Let  be an orthogonal metric space. Then  is said to be 

orthogonally complete (briefly, O-complete) if every Cauchy O-sequence is convergent. 

Definition 2.7 ([3]).  Let ( , )X   be an O-set. A mapping  is said to be -preserving if 



X  X

( , )X 

0x

{ }nx

( , )X d

( , , )X d :T X X

 { }nx X

T  X T



( , , )X d X

:T X X 
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Tx Ty  whenever x y .  

Moreover, we define some new properties of the orthogonal sets as follows: 

Definition 2.8. We say that an O-set  is a transitive orthogonal set if  is transitive. 

Definition 2.9.  Let  be an O-set. A path of length k  in  from x  to y  is a finite 

sequence 

0 1{ , , , }kz z z X such that  

 
* *

0 , kz x z y  , 1i iz z   or 1i iz z 
 

 

for all 0,1,2, , 1i k  . 

Let ( , , )x y   be denoted as all path of length  in  from  to . 

The following lemma will be useful later. 

Lemma 2.10 ([5]).  Let  be a metric space and  a sequence in  such that 

1lim ( , ) 0n n
n

d x x 


 . If  is not a Cauchy, then there exists 0   and two subsequence 
( ){ }n kx  and 

( ){ }m kx  of  where ( ) ( )n k m k k   such that ( ) 1 ( ) 1 ( ) 1 ( ) 1lim ( , ) lim ( , )n k m k n k m k
n n

d x x d x x    
 

   

and ( ) ( ) ( ) ( ) 1 ( ) 1 ( ) 1lim ( , ) lim ( , ) lim ( , )n k m k n k m k n k m k
n n n

d x x d x x d x x   
  

   .        

3. Main Results 

In this section, we introduce a new  -contraction mapping and prove some fixed point theorems for 

-contraction mappings in orthogonally metric spaces. 

Definition 3.1. Let  be an orthogonally metric space. A mapping  is called an 

orthogonal  -contraction mapping with respect to   (briefly, Z -contraction) if there is     such 

that the following condition holds: 

 

 ( ( , ), ( , )) 0d Tx Ty d x y                          (1) 

 

for all ,x y X  with x y . 

Theorem 3.2. Let  be an O-complete metric space with an orthogonal element  and be a 

self-mapping on  satisfying the following conditions:   

1)  is a transitive orthogonal set; 

2)  is -preserving; 

3) T  is a -contraction mapping; 

4) T  is -continuous. 

Then T has a fixed point  Also, the Picard sequence  converges to the fixed point of .T  

Proof. By the definition of orthogonality, there exists 0x X  such that  

 

0( , )y X x y    or 0( , ).y X y x  
 

 
It follows that  

( , )X  

( , )X  

k  x y

( , )X d { }nx X

{ }nx

{ }nx

( , , )X d :T X X

( , , )X d
0x T

X

( , )X 

T 




*x X

0{ }nT x
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0 0x Tx  or 0 0Tx x . 

 

Let 1 0

n

n nx Tx T x  
 for all 0.n

 If * * 1n nx x 
 for some 

*

0n 
,  then *nx

 is a fixed point of 

 and so the proof is completed. So we may assume that 1n nx x 
 for all  Thus we have 

1( , ) 0n nd x x 
 for all  Since  is -preserving, we have  

 

1( , )n nn x x    or 1( , ).n nn x x 
 

 

Since T  is a -contraction mapping, we have 

 

 2 1 1

0 0 0 00 ( ( , ), ( , ))n n n nd T x T x d T x T x   
 

 
1 2 1

0 0 0 0( , ) ( , )n n n nd T x T x d T x T x   
 

 

for all .n   It yield that 1

0 0{ ( , )}n nd T x T x  is a monotonically decreasing sequence of positive reals 

and then there exists 0c   such that  
 

1

0 0lim ( , ) .n n

n
d T x T x c




 
 

Suppose that 0.c   Using (1) and 3( )  of Definition 1.1, we have  

 
2 1 1

0 0 0 00 limsup ( ( , ), ( , )) 0n n n n

n

d T x T x d T x T x   



  , 

 

which is a contradiction. Therefore, 0c   and so  

 
1

0 0lim ( , ) 0n n

n
d T x T x


 . 

 

Now, we show that { }nx  is a Cauchy O-sequence. Suppose by contradiction that  is not a Cauchy 

O-sequence. By Lemma 2.10, there exists 0   and two subsequence 
( ){ }n kx  and 

( ){ }m kx  of  

where  such that  

 

( ) 1 ( ) 1 ( ) ( )lim ( , ) lim ( , ) .n k m k n k m k
n n

d x x d x x  
 

                        (2) 

 

Since  is a transitive orthogonal set, we have  

 

( ) ( )( , )n k m kk x x   or 
( ) ( )( , )m k n kk x x  . 

From (b), (1), (2), and 3( ) , we have  

( ) 1 ( ) 1 ( ) ( )0 limsup ( ( , ), ( , )) 0n k m k n k m k
n

d x x d x x  


  , 

T 0.n

0.n
T 



{ }nx

{ }nx

( ) ( )n k m k k 

( , )X 
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which is a contradiction. Thus,  is a Cauchy O-sequence in . Since  is O-complete, there exists  

 such that *

nx x  as n  . Since  is -continuous, we have *

nTx Tx  as .  

Thus, 

 

 
* *

1lim lim .n n
n n

Tx Tx x x
 

  
 

 

Hence,  is a fixed point of .  

Theorem 3.3. In addition to the hypothesis of Theorem 3.2, suppose that  is nonempty for all 

,x y X . Then  has a unique fixed point. 

Proof. Suppose that 
* *,x y  are two fixed points of T such that 

* *x y . Since ( , , )x y   is nonempty, 

for all ,x y X , there exists a path 0 1{ , , , }kz z z  of some finite length  in  from  to y such 

that 

 
* *

0 , kz x z y  , 1i iz z   or 1i iz z   for all 0,1,2, , 1i k  . 

 

Since  is a transitive orthogonal set, we get 
* *x y  or 

* *y x . From (1) and , we have  

* * * *0 ( ( , ), ( , ))d Tx Ty d x y  
 

* * * *( ( , ), ( , ))d x y d x y                                      

0,                                                        
 

which is a contradiction. Therefore,  has a unique fixed point. This completes the proof. 

Corollary 3.4. Let ( , )X d  be a complete metric space and  be a  -contraction mapping. 

Then T  has a unique fixed point in X . Moreover, for each 0x X , the Picard sequence  

converges to the fixed point of T . 

4. Application 

In this section, we use the following matrix notations: ( )M n denotes the set of all n n  complex 

matrices, ( )P n  denotes the set of all n n  positive definite matrices, ( )H n
 denotes the set of all 

n n  positive semidefinite matrices. We write A ⪰ B  ( A ≻ B ) if ( )A B H n   (or ( )A B P n  ). In 

particular, A ⪰ 0  ( A ≻ 0 ) implies ( )A H n  (or ( )A P n ). We also write 
*A  denotes the conjugate 

transpose of an n n  matrix A .  In addition, we let Td  denotes the Thompson metric on ( )P n , which 

is defined by  

 ( , ) log max{ , }Td A B  
 

 

   

   

{ }nx X X

*x X T  n 

*x X T

( , , )x y 

T

k  x

( , )X 
3( )

T

:T X X

0{ }nT x
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where inf{ : A  ⪯  
1 1
2 2}B B AB 

  that is, the maximum eigenvalue of
1 1
2 2B AB

 
and 

inf{ : B  ⪯  
1 1
2 2}A A BA 

  , that is, the maximum eigenvalue of
1 1
2 2A BA

 
.



  

The goal of this section is to apply fixed point results for -contraction mappings via Thompson 

metrics to solve the nonlinear matrix equation 

 

*

1

( )
m

r

i i i

i

X Q A X A


                           (3) 

 

where 1r  , iA  is an n n  nonsingular matrix, Q  is a Hermitian positive definite matrix and i  is a 

continuous order preserving self-mapping on ( )P n . 

We recall properties of the Thompson metric for Hermitian positive definite matrices as follows: 

Lemma 4.1 ([6]). Let Td  be a Thompson metric on ( )P n . 

(i) ( ) ( ) ( )-1 -1 * *

T T Td A,B  = d A ,B  = d  MAM ,MBM  for all , ( )A B P n  and a nonsingular matrix 

M ; 

(ii) ( ) ( )r r

T Td A ,B | r | d A,B  for all , ( )A B P n  and  [ 1,1]r  ; 

(iii) ( ) max{ ( ) ( )}T T Td A+ B,C + D d A,C ,d B,D  for all , , , ( )A B C D P n .  

Theorem 4.2. Consider the matrix equation (3).  Let ( )Q P n  and for each 1,2, ,i m , 

: ( ) ( )i P n P n  be a continuous order-preserving mapping. Suppose that there are positive number 1r   

with  

 

( ( ), ( )) [ ( , ) ( ( , ))]T i i T Td X Y r d X Y d X Y   
 

 

for all , ( )X Y P n , 1,2, ,i m , where :[0, ) [0, )     is a continuous functions such that  

( ) 0t   if and only if 0t  . Then the equation (3) has a unique positive solution.  

Proof. Define the relation  on ( )P n  by   

 

A B  A  ⪯ B . 
 

Then, by setting 0 0X  , it follows that ( ( ), )P n   is an O-set. Also,  is transitive on ( )P n . Since 

( ( ), )TP n d  is a complete metric space, this implies that ( ( ), , )TP n d is an O-complete metric space. Next, 

we define a mapping : ( ) ( )T P n P n  by  

 
1

*

1

( ) ( )
rm

i i i

i

T X Q A X A


 
   
 


 

 

for all ( ).X P n  Then T  is well-defined, -continuous, and -preserving.   

Now, we show that T is a -contraction mapping with a function :[0, ) [0, )      which is 

defined by 

 

 ( , ) ( )t s s s t      
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for all , [0, )t s  . Let , ( )X Y P n such that X Y . Then



  

1 1
* *

1 1

( ( ), ( )) ( ( ) ) , ( ( ) )r r

m m

T T i i i T i i i

i i

d T X T Y d Q A X A d Q A Y A
 

 
     

 
   

* *

1 1

1
( ) , ( )

m m

T i i i i i i

i i

d Q A X A Q A Y A
r  

 
     

 
   

* *

1 1

1
( ) , ( )

m m

T i i i i i i

i i

d A X A A Y A
r  

 
   

 
 

                                

 

 
{1,2, , }

1
max ( ), ( )T i i

i m
d X Y

r 
  

                                       
 

( , ) ( ( , ))T Td X Y d X Y 
                                            

 
Thus,  
 

0 ( , ) ( ( , )) ( ( ), ( ))T T Td X Y d X Y d T X T Y  
 

 
and so 
 

0 ( ( ( ), ( )), ( , )).T Td T X T Y d X Y
       

                               
 

Therefore, T  is a -contraction mapping.  

By Theorem 3.2, there exists 
* ( )X P n  such that 

* *( ) .T X X  That is, 
*X  is a positive definite 

solution of the Equation (3). Since there is a greatest lower bound and a least upper bound, we have  

( , , )x y   is nonempty for all , ( )X Y P n . By Theorem 3.3, it follows that T  has a unique fixed point 

in ( )P n . This implies that Equation (3) has a unique solution in ( )P n . 

5. Conclusion 

Our main theorem is a real generalization of the Khojasteha’s fixed point result and the Gordji’s fixed 

point result. Moreover, our new fixed point theorem for Z -contraction mappings can be applied to show 

that the matrix equation (3) always has a unique positive definite solution.  
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