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Abstract: In this paper, a higher-order numerical method for time-dependent singularly perturbed
problems is constructed on the Shishkin mesh. The method consists of Crank-Nicolson method for the time
discretization and a hybrid difference scheme that combines the midpoint upwind difference scheme on the
coarse mesh and the central difference scheme on the fine mesh for the spatial discretization. We prove that
the method is uniformly convergent with respect to the singular perturbation parameter, having order near
two in space and order two in time. Finally, numerical results support the convergence behavior.

Key words: Time-dependent problems, Crank-Nicolson method, Hybrid finite difference method, Shishkin
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1. Introduction

Consider the singularly perturbed initial-boundary value problem

Lu=u, —eu,, (x,t) +a(x)u, (x,t) + b(x,t)u(x,t) = f (x,t), (x,t) € Q,
u(x,0)=u,(x), 0<x<l, (D
u(0,t)=0, u@t)=0, 0<t<T,

where Q=(0,1)x[0,T], 0<&<1 is a small perturbation parameter, functions a(x),b(x,t), u,(x) and
f(x,t) are sufficiently smooth satisfying a(x)>a >0 and b=Db(x,t)>0, where « is a constant.

Under these conditions and some corner compatibility conditions, the problem (1) has a unique solution
with a boundary layer at x=1 (see [1], [2]). Time-dependent problems arise in various fields of
engineering and science, for example elasticity, fluid dynamics, hydrodynamics, etc. Many authors have
discussed fitted mesh finite difference methods to solve these problems (see [1]-[11]).

In this paper, we construct a fully discrete scheme to solve (1), using the Crank-Nicolson method to
discretize in time and the hybrid difference on the Shishkin mesh in space. Furthermore, we establish the
important discrete maximum principle and obtain the uniform higher-order convergence. Finally, the
convergence behaviors are confirmed by numerical experiments.

Throughout the paper, C is a generic positive constant, dependent of the perturbation parameter ¢

and mesh parameters N and M, the norm

(sometimes subscripted) is the maximum norm.
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2. The Fully Discrete Scheme and Its Uniform Higher-Order Convergence

2.1. Mesh Generation in Time and Space
=0,1...,M. Denote

The time interval [0,T] is divided into M equal subintervals as t; Vi I, ]

T :t- —t-_l

4g 1

Let N be a positive even integer and o= mln{— —InN}. We generally take c="2InN <§
a a

Choose 1—o be the transition point. Divide the space interval [0,1-oc] and [L-o,1] uniformly into

N /2 subintervals, respectively. Then the Shishkin mesh is

20=9); o<i<N/2,
x=1 N (2)
1—20(1—ﬁ),N/2gisN.
Denote h=%-%,i=12..N.
Ntch =202 ont h o BN NN
Lemma 2.1 an for i=12,...,.N/2.

4 i .
Similarly, the Bakhvalov-Shishkin mesh replaces (2) with 14—gln[1— 2(1-N )(1—W)], N /2<i<N.Then
o

h _8—ESCN71,i:1,2,...,N/2. in Lemma 2.1.

N/2+i

2.2. Fully Discrete Scheme
Consider using the Crank-Nicolson method for the time discretization and the hybrid difference scheme

that combines the midpoint upwind difference scheme on the coarse mesh and the central difference

scheme on the fine mesh for the spatial discretization:

LM Ny 2 = £192 0ci<Nand0<j<M,

U2 =u,(x), i=0,..,N, (3)

Ud=U} =0, j=01..,M,

where
j+1/2 j+1/2 . . J+l/2 j+1/2
g e A ) 50 DU i B ) o i<y

é‘tuij+1/2 _55X2Uij+1/2 +ai D)(()Uij+1/2 +bij+1/2Uij+l/2, N/2 < | < N,

fiz {f(xi wartia) 0 <1<N/2, Y2 :.UiMJFUi_j sU 2 :.UiM_Uij

f(X|1t]+l/2) N/2<|<N P 2 .
) ) - e
D,U/ :M'D;Uij _w , DU/ = M 52U = (D Ui DU, ),
hi hl+l+h h|+j|_+h

i+1
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% +%, Latt

X+ X;_ .
&y = a(x_y,)=a= > 1) and bill/lgz =b(xi_1,2,tj+1,2) =b(= > T 5 ).
That is
LM Ny J2 = £ &y, B +i) 4 & i £ LS b5 —i)U-j“
¢ ! hih,  2h 4 2r" b (hy +hiy) i h(h +hy)  2hy 4 207
_ 12 _ _ _ j+1/2 _
+( & 4 a|_1/2 " b|_1/2 —i)UIJ _ & UIJ+1 _( & a|—]_/2 _ b|—1/2 +i)U|J_l’
hih,,  2h 4 2r P (hy +hiy) h(h +h,)  2h 4 2r
for 0<i< N/2, and
_ j+1/2 ) _ ) ) _
L I
hihi.q 2 T b +hyy) o 2(h +hyy) h(h +hy)  2(h +hy)
e bZoqo £ 3 i & 3 ;
+( + - =( - Wik —( + Ui,
hili4 2 T hi (hy +hyg) 20 +hyyy) h(h +hyy)  2(h +hyyyg)
for N/2<i<N.
) J+1/2
Lemma 2.2 (Discrete Maximum Principle) If ——+ B By Lo for o<i< ﬁ,
hh, 2h 4 2t 2
e b2 a _ '
W-I- '2 ~2<0 and ——+3<0 for %<I< N, and the mesh function y; satisfies y’>0 for
i 4 i1
i=0,...,N, t//oj >0 and l//,{" >0 for j=0,1,..,M, then L?'Nwi““zzo for O<i<N and

0< j<M implies that l//ijZO for 0<i<N and 0<j<M.

Proof. Using mathematical induction to prove this theorem, if 1//ij >0 for 0<i<N and j<gq,

a,y, b2 g
Assumed that there exist a point (p,q+1) such that t//g+l = miny " <0, by S L = LAY
0<i<N hohyy 2N, 4 2
N < a c q+1/2
we have L’;A'N(//g+1/2<0 for 0O<p<—, and by ——+-—L2<0 and +—P2 <0, we have
2 b1 2 hohp 2 T

N _
L Yy 9t/ &0  for S <P< N, which is a contradiction as LY"yJ™"?>0 for 0<i<N and
0< j< M. Therefore, l//ijZOfOI‘ 0<i<N and 0<j<M.

N 2|la
Corollary 2.3 When the first three conditions in Lemma 2.2 are replaced bymzﬂ and
n o

N? b, 1
e +% <— on the Shishkin mesh (2), the conclusion of Lemma 2.2 is effective.
20InN 2 ¢

2 2 b
N > ”a||°° and N'a +|| ”°° Sl, let U be the solution of the

Theorem 2.4 Supposed that >
InN a 2cInN 2 T

problem (1) and uij be the solution of the problem (3) on (2), then the following error estimate exists:

© o JCINT? M), 0<i<N/2,0< <M,
‘ui _Uij‘g 2 [n2 2 i .
C(NZIN°N+M™),N/2<i<N,0<j<M.
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Proof. The solution u(x,t) of (1) and the solution Uij of (3) can be split into the smooth component
and the layer component, respectively: u(X,t)=v(x,t)+w(x,t), and Uij =Vij +Wij. Therefore,
‘uij —Uij‘s‘vij —Vij‘+‘wij —Wij‘.As for the smooth component vij and Vij, by using the techniques in [9],
we have ‘Vij —Vij‘S C((N*INN)2+M™?) for 0<i<N and 0<j<M. Similarly, the layer component

satisfies ‘Wij —Wij‘S CN™? for 0<i<N/2 and 0< j<M. Furthermore, the techniques in [9] for the

time-dependent singularly perturbed problem and in [1] for the two-point boundary value problem are

extended to prove that ‘Wij —Wij‘SC(N’ZIn2N+M’2) for N/2<i<N and 0<j<M.

3. Numerical Results
The numerical results of the fully discrete scheme (3) are shown in Tables 1-4 and Figures 1-2. The

maximum errors are given by el = ‘U(X tM)—UiM‘ and ey'™ = max |u(x;, tM)—UiM‘ for the

0<|<N/2 N/2<i<N

coarse part and the fine part on the Shishkin mesh respectively, where u(X; ,tj) and U ij denote the exact

and the numerical solutions with N mesh intervals in the spatial direction and M mesh intervals in the

time direction. And the numerical convergence orders and the numerical convergence constants in the time

M MN MN  aM.N
direction are calculated by log, 82M ) I\I/_I*Z 'IOQZ(ezRM,N ), I\;*Z respectively. Similarly, the numerical
L R

convergence orders and the numerical convergence constants in the spatial direction are calculated by

el eL ep " woN
log, (v N —~ian ) N |0g2(egly2N ): NZINEN respectively.
Problem 1

2
U — &, +U, +u=e"(1- e’l"g)( 2 smEx+Zcos x) (x,1) € (0,2) x (0,1],

u(x,0) =u,(x) =e ¢ +(1—e‘l’g)sin%x—e‘(l‘x)"g, 0<x<1,

u(0,t)=u(@,t)=0, 0<t <],

Lty e T 0
where the exact solutionis u(x,t)=e™"(e™¥* +(1-e 1/S)SInEx—e a=0ley,

The numerical results of (3) for Problem 1 in time and space are shown in Tables 1 and 2, respectively.

Table 1. The Numerical Results of the Scheme (3) When N=3200 for Problem 1

const const

M e'I:A’N order e:\QA’N order

2 4.290001e-02 2.9002 0.1716 4.290118e-02 2.9001 0.1716
4 5.746627e-03 2.0103 0.0919 5.746965e-03 2.0695 0.0920
8 1.426459e-03 1.9524 0.0913 1.369173e-03 1.8930 0.0876
16 3.685773e-04 1.9661 0.0944 3.686375e-04 1.8992 0.0944
32 9.433464e-05 2.0061 0.0966 9.882873e-05 1.3777 0.1012
64 2.348368e-05 0.0962 3.803356e-05 0.1558
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Table 2. The Numerical Results of the Scheme (3) When M=3200 for Problem 1

N et/l N order const eg N order const

10 3.630137e-03 4.6587 0.3630 5.710833e-02 0.2593 5.7108
20 1.437149e-04 2.0473 0.0575 4.771354e-02 0.9012 11.2753
40 3.476930e-05 2.0017 0.0556 2.554737e-02 1.3071 15.9261
80 8.681844e-06 2.0055 0.0556 1.032471e-02 1.6940 18.2448
160 2.162245e-06 2.0204 0.0554 3.191016e-03 1.6731 16.8151
320 5.329666e-07 0.0546 1.000629e-03 16.3270

The log2—-log2 graphs of errors illustrate the convergence orders in time for the scheme (3) on
[0,1-0] and [l-o] on the Shishkin mesh and the Crank-Nicolson & Simple method on [0,1-o] and
[L—o] on the Bakhvalov-Shishkin mesh in Fig. 1 (a) and Fig. 1 (b). The convergence orders in space for
both schemes are shown in Fig. 2 (a) and Fig. 2 (b).

4 4
—&— Crank-Nicolson & Hybrid on S mesh —8— Crank-Nicolson & Hybrid on S mesh
—%— Crank-Nicolson & Simple on B-S mesh —%— Crank-Nicolson & Simple on B-S mesh |
% -
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Fig. 1. The log2—1log2 graphs of errors of (3) on S-mesh and the C-N simple scheme on BS-mesh in time.

. —&— Crank-Nicolson & Hybrid on S mesh —&— Crank-Nicolson & Hybrid on S mesh
6 e —*#— Crank-Nicolson & Simple on B-S mesh ~ —#— Crank-Nicolson & Simple on B-S mesh

log2(Error) on [0,1-0]
log2(Error) on [1-0,1]
4

3 4 5 6 y 8 9 3 R 5 6 7 8 9
log2(N) l0g2(N)

Fig. 2. The log2—1log2 graphs of errors of (3) on S-mesh and the C-N simple scheme on BS-mesh in space.

Problem 2

2
U —&u, +u, +u=e" (—”Tgcos%x+%cos%x), (x,1) € (0,1) x(0,2],

1 _ e—(l—X)/é‘

T
T —cos—X,0<x<1],
Tz 5

u(x,0) =u,(x)=

u(0,t)=u(d,t)=0, 0<t <],
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1_p @xle

where the exact solution is u(xt)=e™( —COSEX). Numerical results for Problem 2 are

_ e—l/s

illustrated in Tables 3 and 4.

Table 3. The Numerical Results of the Scheme (3) When N=3200 for Problem 2

M e["’N order const e:\?/I,N order const
4 4.427881e-03  1.7481 0.0708 4.428742e-03  1.7481 0.0709
8 1.318121e-03  2.0138 0.0844 1.318449e-03  1.9942 0.0844
16 3.263841e-04  1.9914 0.0836 3.309387e-04  1.9791 0.0847
32 8.208650e-05  2.0006 0.0841 8.393926e-05  1.8365 0.0860
64 2.051310e-05  2.0012 0.0840 2.350329e-05  1.6240 0.0963
128 5.124163e-06 0.0840 7.625356e-06 0.1249

Table 4. The Numerical Results of the Scheme (3) When M=3200 for Problem 2

N e["’N order const el'\?/I,N order const
20 1.437069e-04 2.0473 0.0575 4.771353e-02  0.9012 11.2753
40 3.476770e-05 2.0028 0.0556 2.554737e-02  1.3071 15.9261
80 8.675223e-06 2.0111 0.0555 1.032471e-02  1.6940 18.2448
160 2.152211e-06 2.0426 0.0551 3.191016e-03  1.6731 16.8151
320 5.224028e-07 2.0391 0.0535 1.000629e-03  1.6900 16.3270
640 1.271043e-07 0.0521 3.101286e-04 16.1314

Tables 1 and 3 show that the numerical results of the scheme (3) in time is second-order convergent and
Tables 2 and 4 show that the numerical results of the scheme (3) in space is second-order convergent on the
coarse part and almost second-order on the fine part, which verify Theorem 2.4. And the tables and figures
demonstrate the higher-order convergence and the effectiveness of the proposed scheme (3).

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

Prof. Zheng determined the topic and content of the paper, including the crucial discrete comparison
principle. Miss Jin wrote the paper and made the numerical results.

Acknowledgment

The authors thank the support of Natural Science Foundation of China (No. 11471019).

References

[1] Roos, H. G, Stynes, M., & Tobiska, L. (2008). Robust Numerical Methods for Singularly Perturbed
Differential Equations (2rd ed.). Berlin Heidelberg: Springer-Verlag.

[2] Kopteva, N. V. (1997). On the uniform in small parameter convergence of a weighted scheme for the
one-dimensional time-dependent convection-diffusion equation. Computational Mathematics and
Mathematical Physics, 37(10), 1173-1180.

[3] Kellogg, R. B., & Tsan, A. (1978). Analysis of some difference approximations for a singular perturbation
problem without turning points. Mathematics of Computation, 32(144), 1025-1039.

[4] Kopteva, N. V. (2001). Uniform pointwise convergence of difference schemes for convection-diffusion
on layer-adapted meshes. Computing, 66, 179-197.

[5] Clavero, C., Gracia, J. L., & Stynes, M. (2011). A simpler analysis of a hybrid numerical method for

6 Volume 10, Number 1, January 2020



time-dependent convection-diffusion problems. Journal of Computational and Applied Mathematics,
235(17), 5240-5248.

[6] Miller, ].]. H., O'Riordan, E., Shishkin, G. I., & Shishkin, L. P. (1998). Fitted mesh methods for problems
with parabolic boundary layers. Mathematical Proceedings of the Royal Irish Academy, 98(2), 173-190.

[7] Clavero, C., Jorge, ]J. C., & Lisbona, F. (2003). A uniformly convergent scheme on a nonuniform mesh for
convection-diffusion parabolic problems. Journal of Computational and Applied Mathematics, 154(2),
415-429.

[8] Clavero, C., Gracia, ]J. L., & Jorge, J. C. (2003). High order numerical methods for one dimensional
parabolic singularly perturbed problems with regular layers. Numerical methods for Partial Differential
Equations, 21(1), 149-169.

[9] Kadalbajoo, M. K, & Awasthi, A. (2006). A parameter uniform difference scheme for singularly
perturbed parabolic problem in one space dimension. Applied Mathematics and Computation, 183(1),
42-60.

[10] Mukherjee, K., & Natesan, S. (2009). Parameter-uniform hybrid numerical scheme for time-dependent
convection-dominated initial-boundary-value problems. Computing, 84(3-4), 209-230.

[11] Kadalbajoo, M. K, & Awasthi, A. (2011). The midpoint upwind finite difference scheme for
time-dependent singularly perturbed convection-diffusion equations on non-uniform mesh.
International Journal for Computational Methods in Engineering Science and Mechanics, 12(3), 150-159.

Copyright © 2020 by the authors. This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited (CC BY 4.0).

Quan Zheng was born on Jan. 9, 1964 in Shanghai, China. He earned the B.S. and M.S.
degrees in computational mathematics in Jilin University and his Ph.D. in Institute of
Computational Mathematics and Scientific/Engineering Computing of Chinese Academy
of Sciences.

He has been working at North China University of Technology in Beijing since 1988.

Now, he is a vice chair of Mathematics Department in the University. The previous
publications include: [1] Zheng, Q. Qin E, Gao, Y. (2016). An adaptive coupling method for exterior
anisotropic elliptic problems, Appl. Math. Comput., 273(Jan.), 410~424; [2] Zheng, Q. Li, X,, Gao, Y. (2015).
Uniformly convergent hybrid schemes for solutions and derivatives in quasilinear singularly perturbed
BVPs, Appl. Numer. Math.,, 91(May), 46~59. His current research interests are numerical solutions of
exterior boundary value problems and singularly perturbed problems.

Ke Jin was born on Aug. 19, 1994 in Zhengzhou, China. She is postgraduate student. Her
current research interest is singularly perturbed problems.

7 Volume 10, Number 1, January 2020


https://creativecommons.org/licenses/by/4.0/

