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Abstract: In this paper, a higher-order numerical method for time-dependent singularly perturbed 

problems is constructed on the Shishkin mesh. The method consists of Crank-Nicolson method for the time 

discretization and a hybrid difference scheme that combines the midpoint upwind difference scheme on the 

coarse mesh and the central difference scheme on the fine mesh for the spatial discretization. We prove that 

the method is uniformly convergent with respect to the singular perturbation parameter, having order near 

two in space and order two in time. Finally, numerical results support the convergence behavior. 
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1. Introduction 

Consider the singularly perturbed initial-boundary value problem 
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where (0,1) [0, ],T   0 1   is a small perturbation parameter, functions 0( ), ( , ), ( )a x b x t u x and 

( , )f x t  are sufficiently smooth satisfying ( ) 0a x    and ( , ) 0,b b x t   where   is a constant. 

Under these conditions and some corner compatibility conditions, the problem (1) has a unique solution 

 

 

In this paper, we construct a fully discrete scheme to solve (1), using the Crank-Nicolson method to 

discretize in time and the hybrid difference on the Shishkin mesh in space. Furthermore, we establish the 

important discrete maximum principle and obtain the uniform higher-order convergence. Finally, the 

convergence behaviors are confirmed by numerical experiments.  

Throughout the paper, C  is a generic positive constant, dependent of the perturbation parameter     

and mesh parameters N  and M , the norm  (sometimes subscripted) is the maximum norm. 

with a boundary layer at 1x  (see [1], [2]). Time-dependent problems arise in various fields of 

engineering and science, for example elasticity, fluid dynamics, hydrodynamics, etc. Many authors have 

discussed fitted mesh finite difference methods to solve these problems (see [1]-[11]).
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mesh, uniform higher-order error estimate. 



  

2. The Fully Discrete Scheme and Its Uniform Higher-Order Convergence 

2.1. Mesh Generation in Time and Space 

The time interval [0, ]T  is divided into M  equal subintervals as , 0,1,..., .j

T
t j j M

M
   Denote 

1.j jt t    

Let N  be a positive even integer and 
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Choose 1   be the transition point. Divide the space interval [0,1 ]  and [1 ,1]  uniformly into 

/ 2N  subintervals, respectively. Then the Shishkin mesh is 
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Denote 1, 1,2,..., .i i ih x x i N  
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Similarly, the Bakhvalov-Shishkin mesh replaces (2) with 
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     in Lemma 2.1. 

2.2. Fully Discrete Scheme 

Consider using the Crank-Nicolson method for the time discretization and the hybrid difference scheme 

that combines the midpoint upwind difference scheme on the coarse mesh and the central difference 

scheme on the fine mesh for the spatial discretization: 
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Lemma 2.2 (Discrete Maximum Principle) If 
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   on the Shishkin mesh (2), the conclusion of Lemma 2.2 is effective.     
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   let u  be the solution of the 

problem (1) and j
iu  be the solution of the problem (3) on (2), then the following error estimate exists: 
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Proof. The solution ( , )u x t  of  (1) and the solution j
iU  of (3) can be split into the smooth component 

and the layer component, respectively: ( , ) ( , ) ( , ),u x t v x t w x t  and .j j j
i i iU V W   Therefore, 

.j j j j j j
i i i i i iu U v V w W     As for the smooth component j

iv  and j
iV , by using the techniques in [9], 

we have 1 2 2(( ln ) )j j
i iv V C N N M     for 0 i N   and 0 .j M   Similarly, the layer component 

satisfies  2j j
i iw W CN    for 0 / 2i N   and 0 .j M   Furthermore, the techniques in [9] for the 

  

extended to prove that 2 2 2( ln )j j
i iw W C N N M     for / 2N i N   and 0 .j M     

3. Numerical Results 

The numerical results of the fully discrete scheme (3) are shown in Tables 1-4 and Figures 1-2. The 

maximum errors are given by ,
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coarse part and the fine part on the Shishkin mesh respectively, where ( , )i ju x t  and  j
iU  denote the exact 

and the numerical solutions with N  mesh intervals in the spatial direction and M  mesh intervals in the 

time direction. And the numerical convergence orders and the numerical convergence constants in the time 

direction are calculated by 
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where the exact solution is 1/ 1/ (1 )/( , ) ( (1 )sin ).
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The numerical results of (3) for Problem 1 in time and space are shown in Tables 1 and 2, respectively. 

 

Table 1. The Numerical Results of the Scheme (3) When N=3200 for Problem 1 

M ,eM N
L  order const ,eM N

R  order const 

2 4.290001e-02 2.9002 0.1716 4.290118e-02 2.9001 0.1716 

4 5.746627e-03 2.0103 0.0919 5.746965e-03 2.0695 0.0920 

8 1.426459e-03 1.9524 0.0913 1.369173e-03 1.8930 0.0876 

16 3.685773e-04 1.9661 0.0944 3.686375e-04 1.8992 0.0944 

32 9.433464e-05 2.0061 0.0966 9.882873e-05 1.3777 0.1012 

64 2.348368e-05  0.0962 3.803356e-05  0.1558 

 

time-dependent singularly perturbed problem and in [1] for the two-point boundary value problem are 
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Table 2. The Numerical Results of the Scheme (3) When M=3200 for Problem 1 

N ,eM N
L  order const ,eM N

R  order const 

10 3.630137e-03 4.6587 0.3630 5.710833e-02 0.2593 5.7108 

20 1.437149e-04 2.0473 0.0575 4.771354e-02 0.9012 11.2753 

40 3.476930e-05 2.0017 0.0556 2.554737e-02 1.3071 15.9261 

80 8.681844e-06 2.0055 0.0556 1.032471e-02 1.6940 18.2448 

160 2.162245e-06 2.0204 0.0554 3.191016e-03 1.6731 16.8151 

320 5.329666e-07  0.0546 1.000629e-03  16.3270 

 
 

      

  

 

 

 

Fig. 1. The log 2 log 2  graphs of errors of (3) on S-mesh and the C-N simple scheme on BS-mesh in time. 

 

 

Fig. 2. The log 2 log 2  graphs of errors of (3) on S-mesh and the C-N simple scheme on BS-mesh in space. 
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The log 2 log 2 graphs of errors illustrate the convergence orders in time for the scheme (3) on 

[0,1 ] and [1 ] on the Shishkin mesh and the Crank-Nicolson & Simple method on [0,1 ] and 

[1 ] on the Bakhvalov-Shishkin mesh in Fig. 1 (a) and Fig. 1 (b). The convergence orders in space for 

both schemes are shown in Fig. 2 (a) and Fig. 2 (b).
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 Numerical results for Problem 2 are 

illustrated in Tables 3 and 4. 

 
Table 3. The Numerical Results of the Scheme (3) When N=3200 for Problem 2 

M ,eM N
L  order const ,eM N

R  order const 

4 4.427881e-03 1.7481  0.0708  4.428742e-03 1.7481  0.0709  
8 1.318121e-03 2.0138  0.0844  1.318449e-03 1.9942  0.0844  
16 3.263841e-04 1.9914  0.0836  3.309387e-04 1.9791  0.0847  
32 8.208650e-05 2.0006  0.0841  8.393926e-05 1.8365  0.0860  
64 2.051310e-05 2.0012  0.0840  2.350329e-05 1.6240  0.0963  
128 5.124163e-06  0.0840  7.625356e-06  0.1249  

 
Table 4. The Numerical Results of the Scheme (3) When M=3200 for Problem 2 

N ,eM N
L  order const ,eM N

R  order const 

20 1.437069e-04 2.0473  0.0575  4.771353e-02 0.9012  11.2753  
40 3.476770e-05 2.0028  0.0556  2.554737e-02 1.3071  15.9261  
80 8.675223e-06 2.0111  0.0555  1.032471e-02 1.6940  18.2448  
160 2.152211e-06 2.0426  0.0551  3.191016e-03 1.6731  16.8151  
320 5.224028e-07 2.0391  0.0535  1.000629e-03 1.6900  16.3270  
640 1.271043e-07  0.0521  3.101286e-04  16.1314  

 
Tables 1 and 3 show that the numerical results of the scheme (3) in time is second-order convergent and 

Tables 2 and 4 show that the numerical results of the scheme (3) in space is second-order convergent on the 

coarse part and almost second-order on the fine part, which verify Theorem 2.4. And the tables and figures 

demonstrate the higher-order convergence and the effectiveness of the proposed scheme (3).  
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