
  

Modelisation and Numerical Simulation of a Class of 
Reaction-Diffusion System Resulting from Chemical 

Kinetics 

 

S. Bakht*, N. Idrissi Fatmi 

Laboratory LIPOSI, ENSA Khouribga, University Hassan 1st Settat, Moroccan. 
 
* Corresponding author. Tel.: +212600098891; email: bakht498@gmail.com 
Manuscript submitted August 10, 2017; accepted December 7, 2017. 

 
 

Abstract: In this work, we are interested in modeling the evolution of chemical reactions in the form of 

reaction-diffusion system. Our interest relates to quantitative of formal chemical kinetics. The key quantity 

is that of the reaction rate. A numerical code has been produced allowing to take into account the various 

non-linearities. 
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1. Introduction 

Mathematics always has the benefit of participating in the development of several scientific fields: physics, 

biology, biomedical, engineering ... For the mathematician, these domains offer new and exciting branches of 

research, while for the specialist , Mathematical modeling offers another suitable research tool with new 

laboratory techniques (see [1]-[3]...). 

Chemical kinetics is one of the most important domains in which mathematical modeling is used. This 

branch of science groups together works aimed at describing qualitatively and quantitatively the evolution 

of chemical systems and the different processes appearing in Chemical reactions (see [4]).  

One of the aims of chemical kinetics is qualitative: for example, it is a question of describing the modes of 

activation of a chemical reaction which, of course, requires adequate conditions for its triggering. Another 

object of qualitative chemical kinetics is to study the different chemical species which may appear in the 

reactions. We distinguish other major types of active forms: activated molecules, radicals, ions, complexes 

(combinations of chemical species).  

We are mainly interested in quantitative or formal chemical kinetics. The key quantity is that of the 

reaction rate. Knowing the nature of the constituents, it is necessary to specify the quantitative influence of 

all the measurable factors on the reaction rates. These factors are, for example: concentration of 

constituents, products, reagents, catalysts, temperature, pressure, ect ... 

We found it expedient to explain in the first place the modeling of chemical reactions. This leads to 

so-called reaction-diffusion systems. It should be noted that during these last decades the interest in the 

study of this type of system has grown steadily and an abundant literature has been developed on this 

subject (see [5], [6] ... ). 

The second part was devoted to the numerical simulation of the reaction diffusion systems obtained in 
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the first part of the modeling by the finite element method. We present the general method of finite 

elements to solve the problems of evolutions, we also present the variational formulation of the continuous 

problem and that of the approximated problem. A numerical code has been created in Matlab language 

which allows to take into account the various nonlinearities and the numerical results are given here in 

graphical form.  

2. The Model Problem  

To explain the model, we consider the equation in equilibrium, in the following general form 

 

1 1 2 2 1 1 2 2... ...p p q qn A n A n A m B m B m B                           (1) 

 

where , , ;i jp q n m , for all 1...i p , 1...qj    

Assuming the system is closed, we obtain 

 

1 1
 , 1... , 1...j i

j i

d B d A
v i p j q
m dt n dt

 

 

where A  and v  denote simultaneously the concentration of component A and the instantaneous rate of 

reaction (1) . 

In general, an equilibrium reaction consists not only of an elementary reaction but of several parallel or 

successive reactions. 

For example like :  

 ;  A B B C                                        (2) 

or 

  . A B                                        (3) 
or again 

 

;   A B X X C D                                  (4) 

 
For simplicity, we note ;  ...a A b B   

For these equations, the law of conservation of matter is expressed by 

 
( ) ( ) ( )b t a t c t  

 

that is to say ( ) ( ) ( )          for (2)a t b t c t cste  

( ) ( ) 0    for (3)a t b t  

and  ( ) 2 ( ) ( ) ; ( ) ( ); ( ) ( )    for (4).x t a t c t a t b t c t d t  

For the reaction rates, we have 

1 2( ); ( )         for (2)v a t v c t  

( ) ( )    for (3)v a t b t  

and 1 2( ) ( ); ( ) ( )    for (4).v a t b t v c t d t  

Note that in the previous systems, there are always fewer equations than unknowns.The laws of behavior 

will make it possible to close these systems. On the other hand, it is assumed that the elementary reactions 

satisfy the law of mass action. Thus, considering the following simple form the reaction 

A B  
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If this reaction is elementary, the reaction rate is proportional to the concentration A , such as 

 

( ) ( ) ( )a t ka t b t                                   (5) 

 

Integrating (5), we obtain 0( ) kta t a e  

where 0 (0)a a is the initial value of a and k the constant of rate. 

For the following reaction A B C  

assumed to be elementary, we obtain ( ) ( ) ( )c t ka t b t  

so 

 

0 00
0 0

0 0 0

0

0

( )
; if

( )

( ) ; if not.
1

k b a taa t
e b a

a t a b b
a

a t
a kt

 

 
Now, for the next reaction  

 

 
A B X

X C D
                                    (6) 

 
Assuming that each reaction (6) is elementary of order 1, we obtain   

   

1 1

1 1 2

2

a k ab k x b

x k ab k x k x

c k x d

                              (7) 

 

2.1. Principle of Stationary States  

It consists to consider brutally that ( ) 0x t in the system(7) , which gives 

 

1 1 2k ab k k x  

 

that is to say 1

1 2

k
x ab

k k
 

then, we obtain 

 

1 2

1 2

0 0

1 2

1 2

.

k k
a ab

k k
b a b a

k k
c ab d

k k

.  

 

2.2. Reaction-Diffusion System  

Now, we place ourselves in a more realistic situation, where the reactions take place in an ambient 

environment and the concentrations also depend on the space variable. For example, we take the following 

reaction 
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A B C

B C D
 

 
Assuming that each of the reactions is elementary and follows a law of order 2, we would have 

 

1

1 2

1 2

2

a k ab

b k ab k bc

c k ab k bc

d k bc

 

 

then, the conservation of matter is expressed by  

 

,c a d b a d  

 
To take account of the dependence of concentrations of the variable of space x , we can assimilate each 

constituent to a continuous medium animated by a Eulerian rate ( , )v x t .  

The quantity of a constituentA contained in the volume ( )w t is given by 

 

( )

( ( )) ( , )a

w t

m w t a x t dx  

 

from where 

 

( )

( ( )
div ( , )a

w t

dm w t a
a x t v dx

dt t
 

 
Assuming that the rate of the reactions follows a law of order 2, we obtain 

 

1div ( , )
a

a x t v k ab
t

 

 

To complete the system, we use the law of Fick aav d a , where ad is the diffusivity constant of 

component A. 

Applying the same procedure for the other constituents, we obtain the following system 

 

1

1 2

1 2

2

a

b

c

d

a
d a k ab

t
b
d b k ab k bc

t
c
d c k ab k bc

t
d
d d k bc

t

 

 
It is a system of reaction diffusion, terminology that refers to the two phenomena appearing in the 

diffusion equation of each constituent with its own rate of diffusion and non-linear interaction between the 

different constituents.  

To close the system, it is necessary to add conditions to the edge of  which must reflect the possible 

exchanges of matter with the external environment. 

Example 1  
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For the Ammonia reaction 2 2 3 33N H NH NH  

the mechanism of which can be explained by the introduction of an intermediate state, we obtain   

 

32 1 2
1 2 2 2

1 2

32 1 2
2 2 2 2

1 2

33 1 2
3 3 2 2

1 2

2 2

for , 0,

3
for , 0,

2
for , 0,

N k k
d N N H x t

t k k
H k k

d H N H x t
t k k
NH k k

d NH N H x t
t k k
N H

v v
3

2 0 2 0 3

 

0 for , 0,

( , 0) , ( , 0) , ( , 0) 0 for .

NH
x t

v
N x n H x h NH x x

                   (8) 

 

Example 2 

For the Enzymatic reaction E S E P  

where the molecules of the substituent S react with the enzyme E to give a product P via the formation of an 

intermediate complex. Then, we obtain 

 

1

2
2 0

2
3 0

0 0

0  in 0,

 in 0,

 in 0,

0 on 0,

( , 0) , ( , 0) ,

M

M

E
d E

t
S k

d S E S
t k S

P k
d P E S

t k S

E S P

v v v
E x E S x S P

 

( , 0) 0 for x x

                 (9) 

 

Example 3 

for the reaction of Hydrogen-Bromine 2 2 2Br H HBr  

We obtain  

 
1
2

1
2

1
2

2 2 2
1 2

2

2 2 2
2 2

2

2 2
3

2

.
 in 0,

1  

.
in 0,

1  

 2 .
  

1  

Br L H Br
d Br

t m H Br Br

H L H Br
d H

t m H Br Br

H Br L H Br
d H Br

t m H Br Br

2 2

2 0 2 0

in 0,

 
0 on 0,

( , 0) , ( , 0) ,  ( , 0) 0 For 

Br H H Br

v v v
Br x n H x h H Br x x

                (10) 

 

where 

1
2

5

k
L k

k
  and  

4

3

.
k

m
k  

3. Numerical Simulation  

In this section we are interested to the numerical resolution of the reaction-diffusion system (8), (9) and 

(10) . We have adopted the finite element method for the spatial approximation and that of Newton-Raphson 

to treat the non-linear part. We note that the numerical processing of the three reaction-diffusion (8),(9) and 

(10) , is of the same nature and presents the same difficulties of solving a parabolic problem of the form  
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0

( , , ) in 0,

0 on 0,  

( , 0) ( ) in 

u
d u f x t u T

t
u

T
v
u x u x

                             (11) 

 

where : 0,f T  is a measurable function such that 

1, ,  is of class  u f t x u                              (12) 

 

  ( , , ) 0 ,  f o r  a l l   f t x u L T u                        (13) 

 
, ,

0 for almost all , 0,  and 
f t x u

x t T u
u

                (14) 

where f

u
 denotes the partial derivative of f compared to u .  

Consider then the following spaces rX L  and 1,rV W , where 2r .  

The variational formulation of problem (11)  is then written as follows  

 

 1,

0

Find  such that

( ), ( , , )        

(0)

r

u V

d
u t v d u vdx f t x u vdx v W

dt

u u X

           (15) 

 

where ., .  denotes the product of duality between rL and rL where 1 1
1.

r r
  

3.1. Remark 

The variational formulation (15) has a meaning. Indeed, since 2r ,V L and according to hypothesis 

(13), we have .f L Consequently ( , , )f t x u vdx  has a meaning for all 1,rv W . 

For the approximate variational problem, we consider the space 1 1, , |h v eil hV v W v T  

where h denotes the triangulation of .  

Let 1,hm dimV
1i i m

 base of 1
hV  and iz  be the vertices of the mesh such as 

 
 , 1 ,i i ijz i j m  

 
Consider the following approximate problem : 

given 1
0,h hu V  , find the function  1: 0,h h hu t T u t V   solution of the following ordinary 

differential system 

 

1

0,

( ), ( , , )       
  

(0) .

h h h h h h h h

h h

d
u t v d u v dx f t x u v dx v V

dt

u u

                (16) 

 

We put 
0, 0,

1 1

( ) ;
m m

h j j h j j
j j

u t t u t
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The approximate variational problem (16) is then written  

 

1

1 1 1

0,

Find  such that

, ( , , , )  

0       1

j j m
m m m

j j i j j i j j i
j j j

j j

t

d d
t d t dx f t x t dx

dt dt

j m

 

 

We introduce the Rigidity matrix 
1 ,i j m

ijR a and the mass matrix  
1 ,i j m

ijM b  defined by  

 

 et .ij j i ij j ia dx b dx  

 
The approximate variational problem (16)  finally takes the form  

 

0

,   
0

d t
M dR t F t t
dt                           (17) 

 

where 1
0, 11

, 0  and , ,
j m

j j i i mj m
t t F t F t

 

defined by 

1

, ( , , , )  1 .
M

i j j i
j

d
F t f t x t dx i m

dt
 

 
We then apply the  method to solve our problem (16) . It consists in replacing an ordinary differential 

equation by the finite difference diagram  

 

1 1 1
1

, 1 , 0,    1n n n n n ny y t y t y n N
t

                 (18) 

 

Therefore, to solve the differential system () , we put ( )n
nt and 0

0 . We are getting  

 

0
0

1 1, 1 1 ,1
n n n nM d tR tF t M d tR tF tnn            (19) 

 

Transition algorithm from t 1  to t 1L   

a) We start from 0 1y t   

b) for 1n  à L  make 

 

1 ;ny t  0 1;y y  

 
Repeat until Newton's convergence  

 

, 01 1 1 1

, 1 ,01 1

1 1

M d tR tD F y t V M y y d tRyn
tF y t tF y tnn

y y V
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End of the Newton loop 

 

1 1;nt y  

 

end.   

3.2. Numerical Results 

We present the numerical results for the reaction-diffusion systems that we obtained after modelisation 

of the three examples studied. The initial state 1 0t and the instant 1 10Lt . 

 

  
Fig. 1. Reaction of ammonia. 

 

  
Fig. 2. Reaction of the enzyme. 

 

 
Fig. 3. Hydrogen-bromine reaction. 
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