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Abstract—As we know, thermal behavior of structures must 

be considered in many situation such as study of thermal effect 

on thermal strains, stresses, displacement. There is a practical 

requirement of solid sphere in various modern project. In this 

task, we endeavour to solve the differential equation of heat 

conduction, by applying heat flux to solid sphere of radius ‘a’ 

which is free from traction, when interior temperature is known. 

The initial temperature of the sphere is same as that of 

surrounding temperature, which is zero. The sphere is 

subjected to transient heat supply, angular symmetric i.e. along 

radial direction, at the outer surface. In this article, an attempt 

is being made to solve the differential equation of heat 

conduction. The result is obtained in a series form of Bessel 

function. The result is illustrated numerically and graphically. 

The obtained result may be useful in solving engineering 

problem, particularly for industrial problem, machines 

subjected to heating and cooling. 

 
Index Terms—Inverse transient heat conduction temperature, 

stains, stresses, displacement. 

 

I. INTRODUCTION 

We consider a solid sphere of radius r where 0 r a 

0 2   0 2   .Initial temperature of the sphere 

is same as that of surrounding medium, which is kept 

constant as zero. Then sphere is subjected to heat supply 

along radial direction only i.e. angular symmetric by a heat 

flux ( )f t . The lateral surface of the sphere is insulated. The 

material of the sphere is isotropic, homogeneous and all 

properties are assumed to be constant. The transient heat 

conduction in homogeneous solid sphere with constant 

thermal diffusivity k and no heat source generated is, 
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With the boundary condition 

( , ) 0T r t                                               (2) 

( , ) ( )T a t g t      unknown                                                 (3) 

( , ) ( )T t f t         known     0 a                           (4) 

Equations (1) to (4) constitute mathematical formulation of 

the problem. 

 

II. SOLUTION 

Taking Laplace transform of equation (1), (2), (3), 
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(4),applying initial and boundary condition to it and then 

taking their inverse Laplace as in [1] which finally yields to 

the solution, 
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n  is a root of transcendental equation 
1

2

( ) 0nJ           (6) 

Unknown temperature is given as 
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III. THERMOELASTIC PROBLEM: 

A. Stress-Strain-Displacement Relationship: 

Consider a sphere of radius a in which the temperature is a 

function of only r. The displacement in this case as in [9] is, 
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Which must satisfy the equilibrium equation as in [7] and 

[8] 
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The differential mechanical equilibrium equation as in [7] 

and [8] is 

2
( ) 0r r t

d

dr r
                        (14)                                                                                                

The strain-stress relations are, 
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 -Thermal expansion coefficient,  v -Poisson’s ratio,  E
-Young’s modulus,  u -Radial displacement 

r -Radial strain,  t -Tangential strain,  r -radial stress,  

t -Tangential stress 

 

IV. SOLUTION OF THERMOELASTIC PROBLEM 

To solve thermoelastic problem we solve necessary 

integral
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Radial displacement is given from equation (5) and (8) 

which yields as 
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Radial strain is given from equation (9) and (18)  which 

yields as
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Tangential strain is given from equation (10) and (18) 

which yields as 
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From (19) and (20) equation (11) is satisfied 

Radial stress is given from equation (5) and (12) which 

yields 
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Tangential stress is given from equation (5) and (13) which 

yields as 
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From equation (21) and (22) equation (14) is satisfied  

 

V. NUMERICAL CALCULATION             

   Set  ( ) tf t e         Let     a=1m    0.5m   
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VI. MATERIAL PROPERTIES  

Numerical calculation are carried out for steel sphere (SN 

50C) 
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Using equation (23) the above equations (5), (18), (19), (20) 

(21), (22) yields 
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VII. CONCLUSION 

 Figureno.1shows the temperature increases up to r=.8 

then decreases. It is maximum at r=.8 

  Figure no.2 shows the displacement is zero at r=.4 and 

r=.6. It is maximum at r=.5 

  Figure no.3 shows the radial strain increases up to r=.8 

then decreases. It is maximum at r=.8 

 Figure no.4shows the tangential strain decreases up to 

r=.3.and maximum at r=.5 

 Figure no.5 shows radial stress is negative. It is least lat 

r=.5 and vanishes at r=.5 

 Figure no.6 shows tangential stress decreases 

continuously up to r=.8 and then increases. It is least at r=.8  
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