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Abstract—We study the transmission coefficient and 

photonic band characteristics in an inhomogeneous metallic 

circular waveguide with perfect conducting walls and having 

periodic variation of dielectric constant along the axial direction 

by the transfer matrix method. The propagation ceases below 

the waveguide cutoff and above that band characteristics are 

found to set in for different waveguide modes. In order to avoid 

multiple waveguide mode scattering by the superlattice, the 

dimension of the guide is chosen in such a manner that at the 

operating frequency, only the lowest mode can occur. We 

investigate the number of unit cells (N) dependent transmission 

coefficient  of the structure and also when acting as single or 

double electromagnetic barrier. Specifically, we demonstrate 

the existence of super narrow transmission band and a gap 

region for experimentally realizable structures. Photonic 

crystals have important applications in optical filtering with 

super narrow transmission band. For the guiding structure of 

infinite transverse extent, the analysis is found to agree well 

with that of wave propagation normal to the superlattice planes. 

 
Index Terms—Photonic crystals, photonic band gap, 

transmission coefficient, dispersion relation.  

 

I. INTRODUCTION 

Waveguides [1], being the most basic structures in 

integrated optics, are extensively used for transmission of 

microwave power. It exhibits cutoff characteristic frequency 

similar to that of high pass filter. Due to translational 

invariance of the guiding structure, it is useful to single out 

the spatial variation of the fields in the z-direction and to 

assume 
zieyxHzyxH 



 ),(),,( ,  where   is the 

propagation constant along z direction. If periodic 

perturbation is introduced, the guiding structure [2,3] can 

give  spectrum with forbidden and allowed  frequency band 

called photonic band structure (PBS)[4] which may be used 

for influencing the spontaneous emission (SE) [5] in addition 

to transport of energy or information. The active medium, for 

existence of PBS and observation of inhibition of SE, may 

have 3D periodic structure. The band gap properties of 

conventional photonic crystals (PCs) have been extensively 

studied [4].  Recent theoretical and experimental works 

suggest that 1D PCs [6-9] are an attractive candidate for this 

purpose. The 1D PCs are finite in space so they can not be 

studied as an infinite structure. From a theoretical point finite 

periodic systems are more difficult to analyze because 
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Bloch's theorem which dramatically simplifies the periodic 

problem does not apply. The finitely periodic case can be 

solved analytically for arbitrary N using the transfer matrix 

approach. This paper is concerned with a theory of PBS in an 

inhomogeneous metallic waveguide with perfect conducting 

walls and having periodic variation of dielectric constant 

along the axial direction only. In fact, the behaviour of the 

electromagnetic field in the optical waveguide with a 

stratified medium inside is analyzed. The 1D stratified 

medium of infinite transverse extent has been studied 

extensively. Here, we consider 1D finite PC which is of finite 

transverse extent. We develop the general theory for the 

guiding structure. The formulation of the problem is done so 

that we get scalar wave equation for the longitudinal 

component of the electric and magnetic fields. The 

component Hz satisfies the Helmholtz equation whose 

solution has been obtained through the transfer matrix 

formulation. 

 

II. GENERAL THEORY 

Monochromatic EM wave of frequency   in an 

inhomogeneous, isotropic dielectric medium is described by 

the vector wave equation as 

0)ln()()ln( 22 

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We have 0   for non magnetic materials and 

)(z   for inhomogeneity along axial direction. Eq. (1) 

reduces to       .0)(2

0
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Solution of this equation is obtained as  
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by separation of variables in cylindrical co-ordinates, which 

is accomplished by the substitution 

)()()(),,( zZRzH z   . 

Here, H0, Amn and Bmn are constants and Z(z) satisfies 
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Eq. (3) satisfies the requirements of finiteness at the origin. 

If there is centre conductor (co-axial line), the Neumann 

function cannot be excluded and in general must be retained 

to satisfy the boundary conditions at both inner and outer 

surfaces. The boundary conditions applicable here are: 

continuity of field components and Neumann boundary 

conditions. The surface boundary condition on Hz gives 
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which implies 

,
'

R

xmn
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where 
'

mnx  is the nth root  of  the Eq.  0)(' xJ m  and R  is 

the radius of the metallic cylinder. 






0

  is the cutoff frequency for the  hollow 

metallic waveguide.  For   , the wave number is real, 

waves of different modes can propagate in the guide. We 

introduce periodicity into a hollow metallic circular 

waveguide assuming a Kronig slab dielectric consisting of 

alternate layers of dielectric materials A and B having 

dielectric constants a  and b  thicknesses a and b, 

respectively (Fig. 1), 

i.e.,   )()()( bNdzz
N
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z .d = a+b is the width of the unit cell. 

 
Fig. 1. Inhomogeneous metallic waveguide. 

 

Fig. 2. Dispersion relation for a multilayer structure. 

Assuming that modal fields are described by oscillatory 

nature in higher dielectric constant region and evanescent 

nature in lower dielectric constant region, ),,( zH z   for 

the Nth unit cell (inside the waveguide) can be written as  

      )()(
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For TM modes, the basic solution )()()( zZREz    

still applies, but the boundary condition on Ez   makes 

,
R

xmn

mn   where xmn is the nth root of the Eq. 0)( xJ m . 

Continuity conditions at z = Nd+b and z = (N+1)d give the 

matrix equation 
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The time-reversal symmetry together with conservation of 

energy leads to a general expression for transmission 

coefficient (TC) through N unit Cells, TN, valid for any 

arbitrary 1D periodic structure 
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is the Bloch phase for a single period. If k is the Bloch wave 

vector for infinite periodic structure,  









  )(
2

1
cos
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d

k  gives the dispersion relation (13) 

III. RESULTS AND DISCUSSION 

Below the cutoff frequency of the waveguide every wave 

is subject to attenuation. Introducing step index periodicity 

along the axial direction into a hollow metallic circular 

cylinder can bring opaque bands above the cutoff frequency. 

Hereafter, we show the results of numerical calculation for 

metallic circular waveguide having periodic variation along 

axial direction with perfect conducting walls using Eq. (13). 
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We first show the dispersion relation of EM modes for for 

0 a (air), 025.12  b (Al203), a = 0.945mm, b = 

0.326mm and R = 0.5mm for different TE modes in Fig. 2. 

We see that at any given frequency only a finite number of 

modes can propagate. We can conveniently choose the 

dimension of the guide, so that at the operating frequency 

only the lowest mode can occur. This is shown by horizontal 

arrow on the Fig. 2. In this manner, we can ignore the 

multiple waveguide mode scattering by the superlattice, since 

one waveguide mode can be scattering into other guided 

modes. In the present work, we stress on the lowest TE mode 

which has  m = n = 1  while the   lowest TM mode has m = 0 

and n=1.Here, all relations derived for the TE case also hold 

for the TM case. We note that since   


E  and 


B  satisfy 

different boundary conditions at the interface between two 

dielectric media, the numerical values of the transmission 

coefficients and the transfer matrix will be different in 

general. We see that as frequency increases, ka decreases, 

correspondingly the decay rate of the field within the layers 

of medium A decreases. Increasing the frequency further, the 

modal fields are characterized by oscillatory nature in both 

the layers implying that propagation is not prohibited within 

layer A. This means that for the lowest mode, in the range 

from~0-175.9 GHz the propagation is forbidden in the 

individual layers A, and in the entire composite multilayer  ~ 

from 77.2-150.9, 158.5-220.1 and 241.5-261.4 GHz. 

Interestingly, in the frequency range between 241.5 to 261.4 

GHz, although propagation in the individual layers is allowed 

it is prohibited in the entire composite structure. In the 

following, we search for resonant tunneling with N = 1 (one 

layer of medium A) in Fig. 3 and N = 2 (two layers of 

medium A) in Fig. 4  taking the dimension of the two layers a 

and b to be 0.945 mm and 0.326 mm and R to be 0.5mm and 

10cm (cylinder of very radius). For R=0.5mm, we identify 

only one resonant point for N = 1. If for the given structural 

parameters we wish to have only the lowest mode, the 

operating frequency would be ~ from 74.3 to 108.7 GHz. We 

see that there is no resonance for the single barrier problem in 

this frequency region on the other hand one resonance is 

present in the double barrier case. EM wave propagation is 

prohibited in the individual layers of medium A, therefore, 

the high transmission we see in Fig. 4 suggests a tunneling 

type of effect. It can transmit a mechanically suitable narrow 

band of frequency of light. This may find application in 

monochromators and optical filters. 

Keeping all the parameters same as in Fig. 4 except 

R=1mm we study the N dependent transmission of the 

multilayer guiding system and show our results in Fig. 5. In 

Fig. 6, we change the layer thicknesses as a=0.326mm and 

b=0.945mm keeping R as 1mm. We see that TN is rapidly 

fluctuating function of the Bloch phase , when it is real. 

There are (N-1) transparent points of TN in addition to T1 = 1. 

We infer from Eq. (11) that these type of resonances depend 

on many parameters such as size of the barriers, distance 

between them, values of the dielectric constants and number 

of unit cells We observe that band characteristics are eminent 

even in an N=2 system. When TC drops to a negligible value, 

  crosses a band region to a gap region. For N  2, there are 

regions of almost vanishing TC. The result may be of 

immense significance in the experimental and computational 

investigations. We find that the cutoff frequency 

continuously shifts to lower frequency for thicker samples, 

reducing the band gap size. For R  , i. e., when there is 

no transverse surface boundary, the situation is similar to 

wave propagation normal to the periodic layers for an all 

dielectric photonic structure. There is no cutoff frequency 

and band characteristics exist [7]. Homogeneous metallic 

waveguide is obtained by contracting one of the layer 

thicknesses to zero. Band characteristics disappear and waves 

can propagate above the cutoff frequency. 

 
Fig. 3. Plot of TC versus frequency. 

 
Fig. 4. Plot of TC versus frequency. 

 
Fig. 5. Plot of TC versus frequency 

206

International Journal of Applied Physics and Mathematics, Vol. 2, No. 3, May 2012



  

 
Fig. 6. Plot of TC versus frequency. 

 

IV. SUMMARY 

We have theoretically analyzed the TC and PBG effect in a 

metallic waveguide filled with periodic dielectric materials. 

The central idea of this paper is that introducing periodicity 

into a hollow metallic circular waveguide can bring about 

new interesting optical properties. We have concentrated on 

the lowest mode only by choosing the appropriate dimension 

of the guide to neglect the complications arising due to 

multiple waveguide mode scattering by the superlattice. We 

have studied the multilayer structure that are experimentally 

resizable and can be fabricated more easily than 3D PBG 

systems by means of standard fabrication techniques which 

are routinely used in the optical industry. They may provide 

easy, cheap and effective alternative to improve the 

performance of various devices. The present! D PC can have 

important application in optical filtering with super narrow 

transmission band.  When the circular waveguide is of 

infinite transverse extent, the situation is similar to the wave 

propagation in the stratification direction in the same PBG 

multilayer. But this will require more number of unit cells to 

have PBG characteristics. The most striking feature of the 

present study is the existence of super narrow transmission 

band and PBG characteristics in N ≥ 2 systems.  Existence of 

cutoff frequency, formation of band characteristics and 

dependence of band gap on many parameters such as size of 

the barriers, distance between them, values of the dielectric 

constants etc. can be explained by the combined effect of 

waveguide cutoff attenuation and a global PBG effect. 

Multilayer guiding structure can offer enormous promise for 

optical communication, monochromators, optical filters and 

band gap engineering. 
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