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Abstract: In theoretical chemistry, the revised Szeged index and revised Szeged edge index were introduced
to measure the stability of alkanes and the strain energy of cycloalkanes. In this paper, by virtue of
mathematical derivation, we determine the revised Szeged index and revised edge Szeged index of fan
molecular graph, wheel molecular graph, gear fan molecular graph, gear wheel molecular graph, and their
r-corona molecular graphs. These molecular structures are widely used in biology, medical science and
pharmaceutical fields. At last, the normalized revised Szeged indexes of fan molecular graph, wheel
molecular graph, gear fan molecular graph, gear wheel molecular graph, and their r-corona molecular
graphs are given.

Key words: Chemical graph theory, revised Szeged index, revised edge Szeged index, fan molecular graph,
wheel molecular graph, gear fan molecular graph, Gear wheel molecular graph, r-corona molecular graph.

1. Introduction

Wiener index, PI index, revised Szeged index and revised edge Szeged index are introduced to reflect
certain structural features of organic molecules. Several papers contributed to determine the
distance-based index of special molecular graphs (See Yan et al., [1] and [2], Gao and Shi [3] for more detail).
Let P, and C,be path and cycle with n vertices. The molecular graph F,={v} Vv P, is called a fan molecular
graph and the molecular graph W,={v}v C, is called a wheel molecular graph. Molecular graph I(G) is
called r- crown molecular graph of G which splicing r hang edges for every vertex in G. By adding one vertex

in every two adjacent vertices of the fan path P, of fan molecular graph F,, the resulting molecular graph is a
subdivision molecular graph called gear fan molecular graph, denote as Ifn. By adding one vertex in every
two adjacent vertices of the wheel cycle C, of wheel molecular graph W,, The resulting molecular graph is a
subdivision molecular graph, called gear wheel molecular graph, denoted as V\~/n .

Let e=uv be an edge of the molecular graph G. The number of vertices of G whose distance to the vertex u
is smaller than the distance to the vertex v is denoted by N, (€). Analogously, N, (€) is the number of
vertices of G whose distance to the vertex v is smaller than the distance to the vertex u. Let n(e) be the

number of vertices equidistant from both ends of uv e E(G), The revised Szeged index is defined as
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( ) n( )
S2(G) = (n,(e)+—)(n, (&) +— 7).
e=uv
The number of edges of G whose distance to the vertex u is smaller than the distance to the vertex v is
denoted by m, (€). Analogously, m,(e) is the number of edges of G whose distance to the vertex v is
smaller than the distance to the vertex u. Let m(e) be the number of edges equidistant from both ends of

uv e E(G). The revised edge Szeged index of G is defined as

52.(6)= Y (m, @)+ )(m (0)+ D).

e=uv

Xing and Zhou [4] determined the n-vertex unicyclic graphs with the smallest, the second-smallest and
the third-smallest revised Szeged index. Chen et al. [5] studied the differences between the revised Szeged
index and the Wiener index. Dong et al. [6] considered the revised edge Szeged index of molecular graphs.
Faghani and Ashrafi [7] presented new formula for computing molecular descriptor.

In this paper, we present the revised Szeged index and revised edge Szeged index of IF(F”), Ir(W”),
Ir(lfn) and Ir(\,vn).

2. Revised Szeged Index
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Proof. Let P,=v1v;...vy, and the r hanging vertices of vibe Vil, Viz,..., <n). Let v be a vertex in F,

beside P,, and the r hanging vertices of vbe V', V?, .., V'.Using the definition of revised Szeged index, we

have
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Proof. Let C,=v1v;...vy, and Vil, Vi Vi be the r hanging vertices of v(1<i<n). Let v be a vertex in W,

beside C,, and Vl, VZ, .., V'be the r hanging vertices of v. We denote V.V,;=V,V,. In view of the

n+l

definition of revised Szeged index, we infer
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Theorem 3. Sz"(I (F,))=r*(22n> —43n+28) +r(40n* —88n +56) + (18n° —43n +28) ,

be the adding vertex between viand vi.1. Let V.l, V.2,..., Vir be the r

Proof. Let P,=vqiv;...v, and V. :

i,i+l

V2

i+l ||+l

hanging vertices of vi(1<i<n). Let v be the r hanging vertices of V;;, (1<i<n-1).Letv

i,i+1”

be a vertex in F,beside P,, and the r hanging vertices of v be v , v2 L VL

By virtue of the definition of revised Szeged index, we yield

Sz°(1, ()= ZZ(n (w)+”(w))<n (w)+”(w))

>3 m)+ 22, )+ 78 ZZZ(n o)+ "8y gy 200,
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+nr(r+(r+1)(2n-1)) +(n-1)(2n-3)(r +D3(r +1) + (n—-1)(2n-3)(r +1)3(r +1)
+(N=r(r+(r+1)(2n-1))=r?*(22n* —43n +28) + r(40n> —88n +56) + (18n° — 43n + 28) .
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Corollary 3. SZ*(IEn) =18n° —43n+28.
Theorem 4. Sz (I, (W.))=r?(22n* —=14n+1) +r(40n® —34n) +(18n* —18n) .

Proof. Let C,=v1v;...v;, and v be a vertex in W, beside Gy, and V. . , be the adding vertex between v; and vi.1.
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Let V', V%, .., V'be the r hanging vertices of v and V.l, V.2 V. be the r hanging vertices of v,(1<i<n).

2
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=V,. In view of the definition of revised Szeged index, we deduce
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3. Revised Edge Szeged Index
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Proof. In view of the definition of revised edge Szeged index, we deduce
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4. Normalized Revised Szeged Index
Let m be the edge number of molecular graph G. Aouchiche and Hansen [8] defined the normalized revised

Szeged index by dividing SzS™ (G) by m and then taking the square root, i.e.,

Szs°(G) = SZ(G) .

Using the conclusions raised in Section 2, we infer the following results concern normalized revised
Szeged index.
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5. Conclusion
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In this paper, we conduct the revised Szeged index and revised edge Szeged index and third
geometric-arithmetic index of fan molecular graph, wheel molecular graph, gear fan molecular graph, gear
wheel molecular graph, and their r-corona molecular graphs. Furthermore, the normalized revised Szeged
indexes of these molecular graphs are manifested. The result achieved in our paper illustrates the
promising application prospects for chemical engineering.
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