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Abstract: Closed form analytical expressions for integral transforms of the free particle Green’s functions
by the form factors of the separable potential and Hankel function are evaluated by adopting various
approaches to the problem to construct off-shell Jost/irregular solution of inhomogeneous Schrodinger
type equation for motion in Graz separable potential. Off-shell Jost function is also computed numerically.
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1. Introduction

Separable interactions have been frequently used in different area of physics such as particle, nuclear and
atomic physics because of its simplicity involved in analytical calculation. In general non-local potential is a

with iié

N
function of two coordinate variables. In the separable model Vz(r,r'):z/l'z‘g;(r)xg;(r’)
i1

and g;(l’) represents the state dependent strength parameter and form factor of the potential. The

attractive part of the nucleon-nucleon interaction involves a phenomenological intermediate region and a
one pion exchange tail [1]. Therefore for a correct description of the nucleon-nucleon interaction in terms of
the separable potential one needs at least two terms in the potential with the strength parameter having
opposite signs. Since low energy scattering experiments sample out only the outer region of the potential,
one term separable potential may be of importance for this energy range. For intermediate and high energy
ranges one has to consider higher rank potential because of the sensitivity of scattering data to the choice of
inner core irrespective of whether the separable potential is symmetric or non-symmetric [2]-[5], the
associated Schrodinger equation can be solved in closed form.

The proton-proton and neutron-proton systems have been studied extensively with a large number of
reliable experimental data [6]-[9]. They are rather accurate for proton-proton system while contain minor
uncertainties for neutron-proton system [10]. By assuming charge symmetry which might be violated
slightly [11] one can also extract information regarding neutron-neutron system from proton-proton
observables with a proper treatment of the electromagnetic interaction [12], [13]. As a result, all realistic
nucleon-nucleon interaction models exhibit similar on-shell properties despite the fact that they often
result from different approaches to nucleon-nucleon dynamics [14], [15]. However, the situation is not so
obvious with respect to the off-shell behaviour of the nucleon-nucleon interaction. The corresponding
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evidence can only be found in three or more particle problem involving nucleon-nucleon subsystems [16].
Though there exist numerous investigations of nucleon-nucleon off-shell feature over the last few decades
or so, there is still much controversy and uncertainty about them [17]. Thus it is cleared how important it is
to study off-shell feature of the nucleon-nucleon interaction. Most of the early separable models give poor fit
to experimental data. An exception is the Graz separable potential [13], [18], [19] which produces
reasonable fit to nucleon-nucleon observables. For inelastic scattering, however, one has to deal with the
integral transforms of the free particle Green’s function by the form factors of the separable potential and of
the interacting Green’s function by the Hankel function. The present text addresses itself to evaluate
various integral transforms of the associated Green’s functions and to construct exact analytical expressions
for off-shell Jost solution for motion in Graz separable potential. In section 2 we develop various methods
for construction of off-shell Jost solution for Graz potential in conjunction with integral transforms of the
associated Green’s functions. Section 3 is devoted for numerical results and discussions.

2. Off-Shell Jost Solution

The off-shell Jost solution f°(K,q,r) for Graz separable potential satisfies the inhomogeneous

differential equation [20]-[22]

{dz IR G2)

i = } f5(k,q,r)=d(8,,k a)g,(8,r)+(k*—q*)e""*h?(qr) 1)

with
d’(B..k.a)=4[dsg,(8,,5) F°(k,q,5) 2)
0

and

L)Y,

ﬁ(+) X) = Xh(,+) X) = 3
Here @,(f,,r) is the form factor of the Graz separable potential [18] written as
g/ (ﬂ(’ r)= 2_€(€!)_1rge_ﬁ/r (4)

The particular integral of (1) represents the off-shell Jost solution

o0

12 (k,0,1)=(k* =" [ G (r, 1) A (qr') dr
L (5)
+d? (B,.k,q) [G(r,r)h (gr') dr’

where G)"(r,r"), the irregular free particle Green’s function written as
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G,f’“’(r,r')_— (k) B0 () E2 (K, 1) = g2 (K, r) £ 2 (k)] for ryr (6)

with
#2(k,r) =r"e D¢ +1,2¢ +2,- 2ikr), (7)
f[O (k,r) =—(2kr) ie' 2D p(r 41,20 4 2, 2ikr) (8)
and
(Zﬁ +DI! pifrl2 ¢ gifnl2 F(Zﬁ + 2)
k f k 2k 9
SR (0= @0 e S ©)

Expression in (5) involves some typical indefinite integrals. To circumvent the difficulties in evaluating
such type of indefinite integrals we take recourse to different approaches to the problem to find closed form
expression for the Jost solution for motion in the potential under consideration. The first step is to solve the
inhomogeneous differential equation in (1) directly by applying certain transformations in conjunction with
certain properties of special functions of mathematics.

2.1. Off-Shell Jost Solution-Differential Equation Approach

Transforming the dependent and independent variables in (1) by
f°(k,q,r)=r""e"F’(k,q,r)and z=-2ikr (10)

One has

d? d s __LdiBkay"
{zd7+(2£+2—z)a—(£+l)}5 (k,q,2)= Z{

2ik =5 2" /nl
) (11)
L (i 2L | ‘ n
gty RO +L)L!)'(— g] gt %}

with y=(f, +ik)/2ik and p = (k —q)/2k. Thus, in view of (10) and (11) the general solution [23] of

(1) is written as

f5(k,q,r) = {A O +1,20+2;,-2ikr) + A, P (¢ +1,2( + 2;— 2ikr)

d; (8,.k.q) »"
—— =0 ., ((+1,20+ 2;- 2ikr :
Zlan;[ o g Oea(l+L20+ ) (12)

+(k* —g*)(-2ik)'C_(k, q)P O ((+1,20+2;- 2|k)}} MERY
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Here ®(a,c;z)and YW(a,C;z) areregular and irregular confluent hypergeometric functions [24], [25].

The other quantities A and A, are two arbitrary constants and will be determined from the boundary

conditions on f°(K,q,r) . The factor C, (k,q) is defined as

L@ k)
CL(k,q)=§ LI(/—L)! _EJ |

The off-shell Jost function satisfies the following boundary conditions

—ilzl2

fz (k’ q) = Limrao (qr)[

20+ (g,

and
f,(k,q,r)———e" .
Use of boundary conditionat =0 in (12) together with (14) yields
A,=Gg (k,a)f, (k,0)
with

e""2(=2ik)* T (¢ +1)(2¢ +1)"
q'T(20+2)

Gg (k,q) =

The off-shell Jost function for Graz separable potential [21], [22] is given by

(i)~ (0 +L)!
3 D (K)(2a)" LIz - L)

5 (ka) = £0(k,q)+.2, K99 S()Z

27211 Z;(B,k,0)

where f(k,q) is the free-particle off-shell Jost function reads as

0 1 (0+1- U@+U'q k
g %]

x F0+10+L;20+2,—— 2K
(k+a)

s s
and the other quantities Y (k),and Z;(B,.k.0) are

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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r'2e+2)
2' 0B +k?)

Y2 (k)= [drr e g, (B,,r) d(£+1,20+2;-2ikr) =
0

and

O~ 0" 7" i [re-e-itcarrg
2|k2 fl aq/+l pa—ry n! -0

Zzs(ﬁwk’q):_

n+1

o

Using the standard integral [23]

T . I'(o)p° . .
dze™@ (a,c; pz) = F(o+ao+c;pl/b),
! -(a,C; pz) (oo Dbt Lo+ao+c;plb)

Reo >0,Re(c+c)>1,Reb>Rep

in above equation one obtains

1, (k,q)= Zyn I;Lrg]Idre‘(g‘i(k+q))r0n+l(£+1,2£+2;—2ikr)

2k i CE] Lntre2ni2rss 25
(k+q) k+q (2£+2+n) k+q

With the help of transformation relations [26]-[28]

I'(c)I'(c—a-b)

I'(c—a)(c—b)’

as [(C)T(a+b—c)
I'(@)I'(b)

,FR(a,b;c;z) =

F(a,b;a+b-c+11-2)

+(1-2)

,F(c—a,c-b;c—a-b+11-2)

,F(a,b;c;z)=@1-2)" (ac bcij

and the integral representation of Gaussian hypergeometric function [26]-[28]

. A 1_‘() b-1 c—b-1 -
2Fl(a,b,c,z)_mjolt 1-1)° " (1-tz)®

we arrive at

(0 +1,20 + 2;— 2ikr)

(20)

(21

(22)

(23)

(24)

(25)

(26)
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5k )=F(—€)F(2£+2)(q2—k2)” F L ros Zﬂ[ﬂk
“ (2K)2'T(£ +2)(B, - k) —ik

_F(2£+2)(q+kj”2“1 (-1)" (q-kY 27
(B, —ik) S-HnrEe+2-n\q+k )
sz{l,n—f;n—ul; (q_k)(ﬁ”?k)]
(@+k)(B, —ik)
Using the following three term recurrence relation [26]-[28]
c,F (a,b;c;z) —c,F(a+1b;c;z) +bz,F(a+1,b+1c+1z) =0 (28)
iteratively in the above equation Z(/3,,k,q) is expressed as
s (i) -'r@20+2) 0" 1 ')
Zi(Boka) =" L0(2k)* T ogt L{ﬁ/—lk{r(é +2) @ -k’
(1o k)@l [ 2ik o 29)
B,—ik | (=OrEe+2)\ g, +ik ’
(a-k)(B, + uk)} 20y s
ey e A —(q+k)*" X (B,,k,
{ { @R, —ik) } (@+k)= X/ (B, q)}}
with
s 1 —k , —ik 20-1 "
Xg(ﬂé,k, ): _ (q )(ﬂ | ) Z ( )
“0r@Ee+2) @+k)(B, +ik)(—0+1) sz T(n+3)I'(2¢ —n) (30)

B ey (1 per gy @R )
B, +ik ) T (a-+K)(B, —ik)

Here (,F,), ., (*), the first (n+1) terms of the hypergeometric series with the given parameters and

Df‘ (k) , the Fredholm determinant associated with regular/irregular boundary conditions [21], [29]

D (K)=1-2, | [drdr'g, (5,16 (r,r) g, (8,.1")

L A2 () PI(20+2) o (B, +ik)
=1 (0+1) (8, —ik) (GRS F(l b 2(ﬂ/—lk)j -

@B Ly 2[([%”0}
(ﬂ/,_lk) (:B/_lk)
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In view of (16) and (17) the Graz off-shell Jost solution reads as

£5(k,q,1) = {AD( +1,20 + 2, 2ikr) + G (K, q) F,° (K, Q) ¥ (£ +1,20 + 2;— 2ikr)

Z{d Bk,

o S (041,20 + 2, 2ikr) + (k* —q°) , (32)
n=0

X( 2|k) C (k q) IO 9n+l £— L(f +1 2€+ 2 2|kr)j|} ”l ’

The last two terms in (32), however, can be expressed in terms of indefinite integrals involving free
particle regular Green'’s function [30]. The free particle regular Green’s function [21], [30] is given by

GO®(r,1") = [ F 2 ) =gk, 1) £k r)], for ri(r. (33)

3] (k)
Thus, in conjunction with (33) the last two terms of (32) read as

r /+1 ikr oo

- 2ik2’ {4 e

Y0, (0+1,20+ 2~ 2ikr) = jG°R>(r rg,(B,,r)dr’ (34)
0 -

and

(k? —g2)(-2ik)"C, (k,q)r e 'kfzp L g, (0+120+2;—2ikr)

(35)
— ei(”/ZJ.G;)(R) (r’ r!)(kZ _ qZ)ﬁ/(+) (qu)drl
0
To calculate the quantity d;(/3,,K,q) defined in (2) we proceed as follows.
Multiplying (5) by 4, d,(f,,r) onboth sides and integrating over the whole range one has
2 eitrl2 == A
d3(8,.k,)=(k*~q?) gs(k) Hdrdr'gg(m,r)eé’“%r,r')hé”(qr')
ﬂ, elf;z/Z (i)Lflf (£+ L) (36)
= )Z Z;(B,.k.0)
D; (k) 3 (20)"LI(¢ - L)!
In deriving the above result we have made use of (22) along with the following relation [23]
6_(ac;z)= 11 d(a,c; z)J'e‘Z 2'7**d(a,c;z")dz’' — D(a,c; z)Ie‘Z 2'7**d(a,c;2')dz’
(37)
:2—2 F,o+a,c0+L0+cC;z).
c(c+c-1)
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Combination of (5), (6) and (31) yields

M} (B,.k,q)r e @ (¢+1,20+2;—2ikr)

_ 38
+MS, (B, Kk, q)r e™ W (0+1,20+2;-2ikr) =0 39)
with
d>(B,,k,q) 7., , ,
ME (B, k@)= A+ 280D Targ (5 0y 10k, r)
3.(k) % (39)
ei/,/z/Z(kZ qZ) ©
e [dr'R (qr) 2 (k, 1)
37 (k) I Z ‘
and
dS ,k efi([+1)7r/2
ME (5, K @)=CE ) 1 q) - LD
(2k) , (k)
L) eizr/2 (k2 q )00 ' (40)
dr’ K )+ ———— 2 [dr' A (qr') ¢ (k, 1’
j 9.8, ) (kI o _,1,00()! S(ar) ¢ (k.r)
In view of (17)-(19), (36) and the standard relations
_[e“Z "®(a,C; pz) —% F(a,v+Lc,p/A) (41)
and
2
5 (k,a)= MJ dri @n e, (k1) (42

(20 + 1!

The above coefficient MJ,(f3,,K,q) in (40) becomes zero. Substituting (36) in (39) and evaluating the
definite integrals with the help of the following relation [24], [25]

S _ )

F[b,S;1+S+b—d;1—ﬁj:

a) T@+S—-d)r(S) (43)
ReS>0,1+ReS >Red
We have
-0 145 i(0+1) /2
Al — 2 (El) d( (:B/’kiq)zF 1 f 0+ 2 ﬂ( +Ik ( )Hl € — r(£+1)
(C+1)(B, —ik) , - (k+q)"'T'(20+2)
(44)

L+ -L+)T(A-/—L)( g+k q-k
x(q—k)LZ:: Or@-1) [qu F(l (—L,—0;2— Lq+kj
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Combination of (13), (16)-(19) along with (32), (36) and (44) gives the desired expression for off-shell
Jost solution for Graz separable potential as

eizmz(kz_qz) 4 (i)"fﬁ(ﬁ-l- L)!

Sk a.r)="fkqr)+4,
ckan=t&en+a, 2'0D; (k) 55 (20)" LI(C-L)!

-1 S, +ik
23 (B, k)| ——m— 1L-00+2,~
SR E S A
20+1
x D0 +1,20+2;—2ikr) + (z2ik)” "T(¢+1)
(B, +k*)™
><‘I’(€+1,2€+2;—2ikr)—fZ7/—¢9n+1(€+1,2€+2;—2ikr)}r“1e”<r
2ik &= n!
with
1 itrl2 2041
Pkan-3 (20K)* (¢ + LT+ oo [ T L+L2) r@—/-L)
~(29)-LI(0-L)IT(20+2) (k+q) " | 2k[(2-L)
+k ) —k .
x(q2k j (q—k)ZFl[l—E—L,—E;Z—L;gj}b(ﬁ+1,2€+2;—2lkr)
(46)

L
G=K) e[ ren v 20225 W +1,204 2, 2ikr)
g+k g+k

I'2¢+2)
(¢ +1)(2k) "+

+(k*-q%) Z7| 0 ., ((+1,20+2;— 2|kr)}

2.2. Off-Shell Jost Solution-Integral Transform of Green’s Function

The physical Green’s function for Graz separable potential satisfies the inhomogeneous differential
equation [21]

[j: k- “i*ﬂesm( )=d5 (8,.K,1)9, (5,1) +8(r ~ 1) )

with

A’ (B, k)= 4, [dsg, (B,,5)G 7 (s,1). (48)
0

! (+)
Let the function F(r.r) be related to G,7(r,r) by

G Or,r)=r"e"“F*(r,r). (49)
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Then the integral transform lf(l’, q) = [F(r, r;r'— q] is related to
GO (r,a) =[G (r,r)ir' > by

G (r,q)=r""e"F(r,q). (50)

Equation (49) is inserted in (47) to get

2
{r;j—2+(2£+2+2ikr)i+2ik(£+1)}Ff(r,r’):r"e"“a(r_r’)
r s (51)
+ (+) (ﬂé'k r) —(ﬂ,+|k)r

200

Taking the integral transform of (51) with respect to ﬁé” (ar’) [r" —q] and changing the independent

variable by zZ =-2ikr one has

d2 .d ()2 (~) - (0 + L)
[zd—+(2£+2 7) +(€+1)}F (z,q)= ZLI(( D)2 Tg K

n S(+) (52)
XiP_ZanL _ d, _(,sz’k’Q) /.
= n! 2ik2° 1 ol
The quantity dfm (B,,k,q) isgiven by
d;O(B,.k,a)=dr' A (ar)d (5, k1)
i (53)

=, [ [drdr'h® @GS (r,r)g, (,.1)
00

Equation (52) represents a non-homogeneous confluent hypergeometric differential equation [23]. In
view of (49) and (50), the complete primitive is

G, (r,q) = [B,®(¢ +1,20 + 2, 2ikr) + B, W (£ +1,2¢ + 2;— 2ikr) —%
|

O +0 kY o 4598, k)
LZ(; LI([ L)I ( q] Ap"’(£+1’2£+2’_2|kr)_TM (54)

x A, (£ +1,20+2;—2ikr) [r e

with o=1—/¢—L . To determine the constants B, and B,, boundary conditions on Gfs(” (r,q) will be

applied judiciously at r=0 and I —o0. All the quantities in (54) except W (¢ +1,2¢+2;— 2ikr) are
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zeroat F=0. Thus,onehas B, =0 and

G (r.q) = {BCD(E+12£+2 2|kr)__{ Z(')ZL(NL)'( kj

= L(-L)
(55)
dse k
oo ((+1,20+2; 2|kr)+# (041,204 2;- 2|kr)} r'e
To take the limit I —> o0, the quantity G,*™(r,q) is expressed as
G (r,q)=[drh{” (ar)G;? (r,r’)
- (56)
_ _k—le—i/,n-/2|: fes (k, r)jdr'ﬁf) (CII")%SM (k, rr) + W/,S(+) (k, r)jdrrﬁ;ﬂ (qrr) fES (k, r;):|
0 r
where
G O (r,r)y=—kT"e "2y ik, r)f S (k,r). (57)

Here . and r_have their usual meaning. The functions ) (k,r)and f°(K,r)stand for the

on-shell physical and Jost solutions for Graz separable potential [18], [21], expressed as

(+) 0(+) 2’
(k) =700+ 5t 0T 8, 01 (B, ) (58)
and
£5(kor) = £2(ko 1)+ fozk)wfs (B, K035,k 1), (59)
where
. s » K'T( +1) 0
U, (B,.k) !drgﬂ(ﬂ(’r)ly( (k,r)= |:(£!)(ﬂ/2+k2)“1:|, (60)

x , , N ’ ré’+1eikl’ 2|k
128, k) = [dr'g, (8,,1)6% (1, 1) = {
0

2ik 2 01| (1 +D)(B, —ik) |

ZFl(l,—z;uz; ? +!tj<b(f+1,2€+2;—2ikr) (61)

;1

+ Z?%HM ((+1,20+2;- 2ikr)}
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WS (B,.k) = [drg, (8,,r)f (k1)

itr/2 : (62)
@) ) o Btk
2K AT (0 + 2)(B, —ik) B, —ik
and
358, kD) =], (8,,1)G2 () =12 (8, K1)+ 12K, 1) US B,,K) (63)

with Df‘ (k) , the Fredholm determinant associated with regular and irregular boundary conditions and

D;™ (k) , with the physical boundary condition [21], [29] written as

DX (k)=1- 4, [ [drdrg, (8,16 (r.1) g, (B,.1)
00

L 2] - (64)
:1+,1[ (20 +2)(5, — k) Fl{l,—z;uz;(?“kj J]

127 (M2 (2B,)4 (1 +1) —ik

In Appendix-I we shall describe a different method to evaluate the double integral involved in (64).
Also, the last two terms in (55) can be expressed directly in terms of free particle regular Green’s function
as shown in (34) and (35). Substitution of (56)-(63) in (55) with the limit I' —> o0 one yields

Bl __ {Tdrﬁ§+) (qr) f[O(k’r)+dZS(+) (ﬂ[,k,CI)TdI’ gt!(ﬁ/j!r) féo(k,r) } (65)

1
37(K) s

and

d>4 (B, .k, q)=

DS(+)(k)jdrh(+)(qr)| (B,.k,r). (66)

Evaluation of integrals in above equations leads to

o €7 (D L)L+ L) gk -
bSN(K@K) | (k+a) S LIr(2-L) 29

27 (M2 + 2)
(¢ +2)(B, —ik)

szl(l—f—L,—z;z—L;gﬁ}df‘”(ﬂf,k,q) (67)

szl(l,—€;£+2;’Bé+?kH
S, —ik
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with

—¢ 0
45O k)= { qr@+2) f'(ka)

2'(MD; (k) [(k* =a*)(B, —ik) (¢£+1)

B, + (i) (e+ L)
F[l 00+ 2& jLZ;(Zq) Y ((ﬂwkq)}

(68)

The quantity Z; (f,,K,q) has already been defined in (29). Combination of (55), (67) and (68) gives

the desired expression for the integral transform of the Green’s function for motion in Graz separable
potential under consideration as

CE(SH) (r,q) 2640(” (r, q)—df(*’ (B,.k,q)x

27 (e T (20 + 2) ElL-ees Zﬂ(, (69)
I0(K)(2K) ' T(0 +2)(B, —ik)* B, - |k

x D0 +1,20 + 2;- 2ikr) + k12 7 A, (0+1,20+2;- 2|kr)} gl

The expression for C_-}ZSH (r,—q) is obtained by replacing by — (] in above equation according to

d—-q

G O (r-a) =(=1) [dr'G;® (r,r)h? (—qr)=(-1)' |GV (r,q) . (70)
0

The off-shell physical solution for the motion in Graz separable potential is obtained by using the
following relation

k2_ 2 . o
w Yk q,r) = %[wa (r,q)— (1)’ G (r,—q)]. (71)

Having the expression for off-shell physical solution one can identify the corresponding off-shell Jost
solution by exploiting the following relation [21]

w7 (k,q, r)_——T (k,q,k?)e"*"2 £, (k,r)

1 (72)
+E[efi/,7r/2 f[ (k, q, r) _ ei/f;r/Z f/ (k,—q, r)]
with
kY [F,(ka)— f, (k)]
2y_[ ®* [ASA R VERRYANM I
rak )_[qj 2if,00 73)
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the half off-shell T-matrix. We have identified the off-shell Jost solution for motion in the Graz separable
potential is in exact agreement with (45). In the following we shall discuss another approach to the
problem.

2.3. Off-Shell Jost Solution-Direct Integration Approach

The particular integral of (1), represents the off-shell Jost solution [31], written as
f[S (k, q, r) — (kZ _ qZ)eiZﬂ/ZIGf(I) (r’ rl)h'\lf-*—) (qu)drr . (74)
r

Here Gf‘ M\ (r,r') is the irregular Green'’s function for motion in the potential under consideration and is

rewritten in terms of free particle irregular Green'’s function and their integral transforms as

GSO(r, 1) =G (1, 1) +—2— G (,,r)[ G2 (r,r')g, (,,')dr (75)
D; (k) 2
with
G/ (B,.r)=[GI(r,rg, (B, n)dr . (76)
0

Substituting (75) in (74) one has

< A G oM
f°(k,q,r)= (k> _qZ)eifﬂ/Z[jG;m(r, F)RO (qrydr + <G (4.,9)

D ()
xTG(f’")(r,r')g[(,Bé,,r')dr’} (77)
kAN kg (8, 0) [ G2 (g, (4, rdr
DF () !
where
65 (5,,9)= [ [A“ @r)82® (r,rg, (8, rydrdr . 78)
/!

The indefinite integral involved in (77) can be evaluated by rewriting it as

G20 (), (B,.r)dr = [GIV(r,r)g, (B, r)dr = [GIV(r,r)g (B, r)dr'. (79)
r 0 0

The definite and indefinite integrals involved in (78) and (79) can easily be handled by substituting the
free particle irregular Green’s function [24], [25], [30] together with the relations (26), (37), (41), (43)
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N ) Lb-1) i
abi2)=p s i) @b rL2-b2) (80)
and
F(a,b;c;z)=(1-2)"*",F(c-ac—b;c;z). (81)

All these expressions when substituted in (77) generate the desired expression of the off-shell Jost
solution for the Graz separable potential [i.e. (45)].

3. Numerical Results and Discussions

For the s-wave case the form factor of the Graz-separable potential exactly coincides with that of
Yamaguchi [2]. In the following we shall verify that for the s-wave case (45) exactly coincides with that of
Yamaguchi off-shell Jost solution [22], [32]-[36]. For /=0, (45) becomes

fo(k,q,r) = f(k,q,r)+ 4, K -q7) ) Z2 (B, k ,q)[ -1 ®(1, 2; - 2ikr)

o (k) (;Bo - k)
. (82)
+&‘P(l,2;—2ikr) —izl 0, (L 2;— 2ikr) [re*
(B, +k?) 2ik &= n!
with the free particle s-wave Jost solution
f2(k,q,r) = 2ikre™ [%CD(L 2;— 2ikr) - (1, 2; - 2ikr)
(83)
LK -a') < -
1,2;— 2ikr
(Zk)z ; n- n+1( )
Using the integral representation of ®(a,c;2) and Y(ac2)
1
®d(a,c;z)= _re j u*(@1-u)***du ; Rec>Rea>0 (84)
I'(@I'(c-a)s
and
1 00
Y(a,c;z)=——|e " t** (1+t)**"dt ; Rea>0 (85)
F(a)£
together with the relation
6_(c; z):Z—CD(l,a+ C;2) (86)
o(c+c-1)
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equations (82) leads to

S iqr (IBO + Iq) =B’
fy (k,q,r)= Ay S 2 2 2 2
(0 D= e (B a2 +k) ©7)

with

A

DS (K)=1-——2—.
23, (Bs +K7)

(88)

The result in (87) is in exact agreement with that of Ghosh et al. [34]. Other useful checks on (45) consist

in showing that ff (k,q,r)_)ff (k,) i.e. it reproduces (18); when A4,=0, f°(k,q,r)goes to free

r—0

particle one [i.e.(19)] and for =Kk

ffkn=f2kan|

lér(2£+ Z)r/+lei(kr+ﬂ/2) y
D7 (K)()*T (¢ +2)(B, —ik)

= —(2kr)"Lie' I (0 11,20 + 2;— 2ikr) —

H /+1
F| L=+ 2 P +!k F(€+1)k V(0 +1,20+2,-2ikr) (89)
B, =ik )| (B, +k*)™
ilrl?2 H :
s 2“( LS Y R YL N
k"1 2242| (£ +2)(B, —ik) B, —ik

D/ +1,20 + 2;— 2ikr) + Zy—,«%(ﬁ +1,20+2;— 2ikr)},
n=0 n

the on-shell Jost solution. The off-shell Jost solution and Jost function are continuous functions of the
off-shell momentum ( for Graz potential. It is well known that the phase of the Jost function is the

negative of the scattering phase shift (k). Therefore, one gets the scattering phase shifts from the

knowledge of the Jost function and one has
tan 5(k)=—Im f 3 (k) /Re f (k) (90)
Further, we define a quantity A(K, Q) termed as quasi phase

tan A(k,q)=—1Im f°(k,q)/Re f°(k,q) . (91)

As f°(k,q)is a continuous function of ( equation (91) produces the phase-shift &(k) when q —>K.
In the following we portray the results of A(K, () in Fig. 1 as a function of ( and verify that it produces
the scattering phase shift [37] 6(K) at q=Kk for scattering by Yamaguchi potential [2].
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Fig. 1. A(K, q) as a function of off-shell momentum gq.

Appendix

5[0(*') (a/,’ﬁ/,): TTdrdr’g( (ﬂwr)Gf(” (I’, r’) g, (IBZ ! r’)

The partially projected Green'’s function satisfies the differential equation
————+kz}Gf“’(r,r’):Z(rr')”§(r—r'). (A1)

Taking the double Laplace transforms of equation (A1) with respectto & and £ we have

2, k2)_© o) 2
S +k)—+2(/ +Da, |G, W B)=— A2
{(,Be )aa[ ( )az} (e, b)) (@, +ﬂg)2[+2 (A2)
where
é?(+) (a[’ﬂé) — C_;/ZO(+) (a/,!ﬂ[f) — LZ[G/EJ(+)(r1 r’);aﬂiﬁf] . (A3)
I2r+2) I2r+2)
Using the following transformation

~ 2642 2ik (e, + 3,)

G (e, B) = U(2) ;= (A4
' e (az +:B/)2€+2 (a',e _lk)(ﬁz _Ik)

in (A2) one obtains
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((1— x) di;(_ (¢ +1))Ug (2)=2(2ik)*"* 2. (A5)

Using another transformation

u,()=x"%"f,(x); é=1-y (A6)

and differentiating the resultant equation with respectto & one gets

d2
dg

c(1-¢) 2+{(€+2)+(€—2)§}%+4f5 (£)=0. (A7)

The solution of (A7) is well known and reads as
f,;(é:):BzFl(l,—ﬂ;ﬁ—i-Z;f), (A8)

where B is an arbitrary constant and has to be determined from the boundary condition. In view of (A4),
(A6) and (A8) we have

G (a,, B.)=—B [(2ik)(e, + )] Fl(l,—z;uz; (a, +1K)(B, +ik)} (A9)

(a, —ik)(B, —ik) ’ (a, —ik)(B, —ik)

From the behaviour of éf(ﬂ (a,,B,) forlarge values of @, and S, we obtain

1y (20+1)
S CL (A10)
(r+1)

Combining (A3), (A9) and (A10) the double transform of free particle Green’s function by the form factors
of the Graz separable potential is expressed as

540(” (a,,B,)=

T, +5) Y [1,_ PPN CALD ﬁk)]_ A1)
(¢ + (e, —1k)(B, —iK) (a, —ik)(B, —ik)

For o, = [, one gets the desired expression (64).
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