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Abstract: Closed form analytical expressions for integral transforms of the free particle Green’s functions 
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1. Introduction 

Separable interactions have been frequently used in different area of physics such as particle, nuclear and 

atomic physics because of its simplicity involved in analytical calculation. In general non-local potential is a 

function of two coordinate variables. In the separable model 



N
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iii rgrgrrV
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)()(),(    with 
i
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and )(rg i

  represents the state dependent strength parameter and form factor of the potential. The 

attractive part of the nucleon-nucleon interaction involves a phenomenological intermediate region and a 

one pion exchange tail [1]. Therefore for a correct description of the nucleon-nucleon interaction in terms of 

the separable potential one needs at least two terms in the potential with the strength parameter having 

opposite signs. Since low energy scattering experiments sample out only the outer region of the potential, 

one term separable potential may be of importance for this energy range. For intermediate and high energy 

ranges one has to consider higher rank potential because of the sensitivity of scattering data to the choice of 

inner core irrespective of whether the separable potential is symmetric or non-symmetric [2]-[5], the 

associated Schrödinger equation can be solved in closed form. 

The proton-proton and neutron-proton systems have been studied extensively with a large number of 

reliable experimental data [6]-[9]. They are rather accurate for proton-proton system while contain minor 

uncertainties for neutron-proton system [10]. By assuming charge symmetry which might be violated 

slightly [11] one can also extract information regarding neutron-neutron system from proton-proton 

observables with a proper treatment of the electromagnetic interaction [12], [13]. As a result, all realistic 

nucleon-nucleon interaction models exhibit similar on-shell properties despite the fact that they often 

result from different approaches to nucleon-nucleon dynamics [14], [15]. However, the situation is not so 

obvious with respect to the off-shell behaviour of the nucleon-nucleon interaction. The corresponding 
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evidence can only be found in three or more particle problem involving nucleon-nucleon subsystems [16]. 

Though there exist numerous investigations of nucleon-nucleon off-shell feature over the last few decades 

or so, there is still much controversy and uncertainty about them [17]. Thus it is cleared how important it is 

to study off-shell feature of the nucleon-nucleon interaction. Most of the early separable models give poor fit 

to experimental data. An exception is the Graz separable potential [13], [18], [19] which produces 

reasonable fit to nucleon-nucleon observables. For inelastic scattering, however, one has to deal with the 

integral transforms of the free particle Green’s function by the form factors of the separable potential and of 

the interacting Green’s function by the  Hankel function. The present text addresses itself to evaluate 

various integral transforms of the associated Green’s functions and to construct exact analytical expressions 

for off-shell Jost solution for motion in Graz separable potential. In section 2 we develop various methods 

for construction of off-shell Jost solution for Graz potential in conjunction with integral transforms of the 

associated Green’s functions. Section 3 is devoted for numerical results and discussions. 

2. Off-Shell Jost Solution 

The off-shell Jost solution ),,( rqkf S

  for Graz separable potential satisfies the inhomogeneous 

differential equation [20]-[22] 

 

2
2 2 2 /2 ( )

2 2

( 1) ˆ( , , ) ( , , ) ( , ) ( ) ( )S S id
k f k q r d k q g r k q e h qr

dr r

   
     

 


     

 
              (1) 

 

with 

                                 

0

( , , ) ( , ) ( , , )S Sd k q ds g s f k q s  


                                  (2) 

 

and 

2
( ) ( )

0

( ) ( )!ˆ ( ) ( )
(2 ) !( )!

L
ix

L
L

i L
h x xh x e

ix L L


 




 






 




                          (3) 

Here ),( rg    is the form factor of the Graz separable potential [18] written as  

 
1( , ) 2 ( !)

r
g r r e

    
                                     (4) 

 

The particular integral of (1) represents the off-shell Jost solution 
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where ),()(0 rrG I 
 , the irregular free particle Green’s function written as 
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Expression in (5) involves some typical indefinite integrals. To circumvent the difficulties in evaluating 

such type of indefinite integrals we take recourse to different approaches to the problem to find closed form 

expression for the Jost solution for motion in the potential under consideration. The first step is to solve the 

inhomogeneous differential equation in (1) directly by applying certain transformations in conjunction with 

certain properties of special functions of mathematics. 

2.1. Off-Shell Jost Solution-Differential Equation Approach 

Transforming the dependent and independent variables in (1) by 
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with ikik 2/)(    and kqk 2/)(  . Thus, in view of (10) and (11) the general solution [23] of 

(1) is written as 
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Here );,( zca and );,( zca  are regular and irregular confluent hypergeometric functions [24], [25]. 

The other quantities 1A  and 2A  are two arbitrary constants and will be determined from the boundary 

conditions on ),,( rqkf S

  . The factor ),( qkCL  is defined as 
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The off-shell Jost function satisfies the following boundary conditions 
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Use of boundary condition at 0r  in (12) together with (14) yields 
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The off-shell Jost function for Graz separable potential [21], [22] is given by 
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where ),(0 qkf  is the free-particle off-shell Jost function reads as 
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and the other quantities 
)(kY S

 , and 
),,( qkZ S

 
 are  
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Using the standard integral [23] 
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in above equation one obtains   
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With the help of transformation relations [26]-[28] 
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and the integral representation of Gaussian hypergeometric function [26]-[28] 
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we arrive at 
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Using the following three term recurrence relation [26]-[28] 
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iteratively in the above equation ),,( qkZ S
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Here (*))( 112 nF , the first )1( n terms of the hypergeometric series with the given parameters and 

)(kDS

 , the Fredholm determinant associated with regular/irregular boundary conditions [21], [29] 
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In view of (16) and (17) the Graz off-shell Jost solution reads as 
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The last two terms in (32), however, can be expressed in terms of indefinite integrals involving free 

particle regular Green’s function [30]. The free particle regular Green’s function [21], [30] is given by 
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Thus, in conjunction with (33) the last two terms of (32) read as 
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To calculate the quantity ),,( qkd S

   defined in (2) we proceed as follows. 

Multiplying (5) by ),( rg    on both sides and integrating over the whole range one has  
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In deriving the above result we have made use of (22) along with the following relation [23] 
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Combination of (5), (6) and (31) yields 
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In view of (17)-(19), (36) and the standard relations 
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The above coefficient ),,(2 qkM S

   in (40) becomes zero. Substituting (36) in (39) and evaluating the 

definite integrals with the help of the following relation [24], [25] 
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Combination of (13), (16)-(19) along with (32), (36) and (44) gives the desired expression for off-shell 

Jost solution for Graz separable potential as 
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with 
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2.2. Off-Shell Jost Solution-Integral Transform of Green’s Function 

The physical Green’s function for Graz separable potential satisfies the inhomogeneous differential 

equation [21] 
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Then the integral transform  qrrrFqrF  );,(),(  is related to 

 qrrrGqrG SS   );,(),( )()(

  by 
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Equation (49) is inserted in (47) to get 
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Taking the integral transform of (51) with respect to )(ˆ )( rqh 

 ][ qr   and changing the independent 

variable by ikrz 2  one has 
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The quantity ),,()( qkd S

   is given by 
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Equation (52) represents a non-homogeneous confluent hypergeometric differential equation [23]. In 

view of (49) and (50), the complete primitive is 
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with L 1 . To determine the constants 1B  and 2B , boundary conditions on ),()( qrG S 

 will be 

applied judiciously  at 0r  and r . All the quantities in (54) except )2;22,1( ikr   are 
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zero at 0r .  Thus, one has 02 B and 
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To take the limit r , the quantity ),()( qrG S 
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 , the Fredholm determinant associated with regular and irregular boundary conditions and 
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In Appendix-I we shall describe a different method to evaluate the double integral involved in (64). 

Also, the last two terms in (55) can be expressed directly in terms of free particle regular Green’s function 

as shown in (34) and (35). Substitution of (56)-(63) in (55) with the limit r one yields 
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Evaluation of integrals in above equations leads to 
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The quantity ),,( qkZ S

   has already been defined in (29). Combination of (55), (67) and (68) gives 

the desired expression for the integral transform of the Green’s function for motion in Graz separable 

potential under consideration as 

 

 

.)2;22,1(
!22

1
)2;22,1(

;2;,1
))(2()2)((

)22()!(2

),,(),(),(

1

1,

120

2/1

)()(0)(

ikr

i

SS

erikr
ik

ikr

ik

ik
F

ikkk

e

qkdqrGqrG














































































        (69) 

 

The expression for ),()( qrG S 

 is obtained by replacing q  by q in above equation according to  
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The off-shell physical solution for the motion in Graz separable potential is obtained by using the 

following relation 
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Having the expression for off-shell physical solution one can identify the corresponding off-shell Jost 

solution by exploiting the following relation [21] 
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the half off-shell T-matrix. We have identified the off-shell Jost solution for motion in the Graz separable 

potential is in exact agreement with (45). In the following we shall discuss another approach to the 

problem. 

2.3. Off-Shell Jost Solution-Direct Integration Approach 

The particular integral of (1), represents the off-shell Jost solution [31], written as 
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Here ),()( rrG IS 
 is the irregular Green’s function for motion in the potential under consideration and is 

rewritten in terms of free particle irregular Green’s function and their integral transforms as 
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Substituting (75) in (74) one has 
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The indefinite integral involved in (77) can be evaluated by rewriting it as
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The definite and indefinite integrals involved in (78) and (79) can easily be handled by substituting the 

free particle irregular Green’s function [24], [25], [30] together with the relations (26), (37), (41), (43)
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All these expressions when substituted in (77) generate the desired expression of the off-shell Jost 

solution for the Graz separable potential [i.e. (45)]. 

3. Numerical Results and Discussions 
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with the free particle s-wave Jost solution 
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Using the integral representation of );,( zca and );,( zca  
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together with the relation 
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equations (82) leads to  
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The result in (87) is in exact agreement with that of Ghosh et al. [34]. Other useful checks on (45) consist 
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the on-shell Jost solution. The off-shell Jost solution and Jost function are continuous functions of the 

off-shell momentum q  for Graz potential. It is well known that the phase of the Jost function is the 

negative of the scattering phase shift )(k . Therefore, one gets the scattering phase shifts from the 

knowledge of the Jost function and one has  
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Further, we define a quantity ),( qk termed as quasi phase  
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As ),( qkf S
is a continuous function of q equation (91) produces the phase-shift )(k when kq  . 

In the following we portray the results of ),( qk in Fig. 1 as a function of q  and verify that it produces 

the scattering phase shift [37] )(k  at kq  for scattering by Yamaguchi potential [2]. 
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Fig. 1. ( , )k q  as a function of off-shell momentum q. 
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The partially projected Green’s function satisfies the differential equation 
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Taking the double Laplace transforms of equation (A1) with respect to   and   we have  
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Using the following transformation 
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in (A2) one obtains 
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Using another transformation  
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and differentiating the resultant equation with respect to  one gets 
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The solution of (A7) is well known and reads as 
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From the behaviour of ),(
~ )(0

 G for large values of 
  and   we obtain 
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Combining (A3), (A9) and (A10) the double transform of free particle Green’s function by the form factors 

of the Graz separable potential is expressed as 
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For     one gets the desired expression (64). 
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