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Abstract—Carleton damage function has been commonly 

utilized to describe the weapon-target interaction in the weapon 

effectiveness analyses. This function is simplified from the 

actual weapon lethality data and these simplifications can affect 

the analysis results. This paper investigates the difference 

between results of Monte Carlo simulations to determine the 

probability of target damage that utilize the Carleton damage 

function and the results of the same simulations that utilize a 

non-simplified probability of kill (Pk) matrix. A problem of 

multiple shots of an unguided artillery weapon against an area 

target was chosen as a case study. Two sets of Monte Carlo 

simulations to determine the probability of damage on a target 

were performed for several numbers of shots and target sizes. 

The first set of simulations utilized the Pk matrix while the 

second set utilized the Carleton damage function. Statistical 

analyses were performed. It was suggested that there was 

difference between the results of two sets of simulations but the 

effect size was small. 

 

Index Terms—Damage function, probability of damage, 

Monte Carlo simulation, weapon effectiveness.  

 

I. INTRODUCTION 

Monte Carlo methods have been employed in the field of 

weapon effectiveness to determine the probability of target 

damage when there are no close form solutions available. A 

Monte Carlo simulation to determine the probability of 

damage on an area target inflicted by artillery weapons 

normally comprises several thousand runs. In each run, the 

impact points of all shots are randomized in accordance with 

the weapon delivery accuracy. Then the probability of 

damage inflicted by the weapons on the targets in each run 

can be evaluated per weapon lethality data, which describe 

the interaction between a specific weapon and a specific type 

of targets. These weapon lethality data are normally 

determined by testing or numerical simulation. They are 

often presented in the form of Pk (Probability of kill) matrix 

that describes Pk value at various distances around the impact 

point. This format may be too complicated for computing in 

the operations so the lethality data are approximated and 

replaced by closed form damage functions.  

Several damage functions have been described in many 

literatures and text books [1]-[5]. Two most widely used 

damage functions are the cookie cutter function and the 

Carleton function. The cookie cutter function simply assumes 

that fraction of the targets that lies inside the weapon lethal 

 

area will be completely destroyed while the rest will receive 

no damage. The Carleton function assumes Gaussian 

distribution of Pk value at any distance from the impact point. 

An example of recent research works that employed these 

damage functions in Monte Carlo simulations to analyze 

weapon effectiveness is Anderson [6]. In his work, Monte 

Carlo simulations were performed to determine the 

probability of damage inflicted on a point and an area target 

by a single and a stick of air-to-surface weapons. The 

simulations utilized the rectangular cookie cutter and the 

Carleton function. The results from the Monte Carlo 

simulations were compared to the results from JMEM (Joint 

Munitions Effectiveness Manuals) method, which is a 

standardized methodology developed by JTCG/ME (Joint 

Technical Coordinating Group for Munitions Effectiveness) 

in the United States of America [7]. 

In most cases of fragmentation weapons against personnel 

targets, the Carleton function is apparently more realistic than 

the cookie cutter function in representing the weapon 

lethality. However, the Carleton function still differs from the 

non-simplified Pk matrix and it can possibly affects the 

results of Monte Carlo simulations. The objective of this 

paper is to investigate whether the results of Monte Carlo 

simulations that utilize the Carleton function differ from the 

simulations that utilize a non-simplified Pk matrix. The focus 

of this paper is on the problem of multiple shots of unguided 

artillery weapon against a uniform value area target. 

 

II. MONTE CARLO SIMULATION TO DETERMINE THE 

PROBABILITY OF DAMAGE 

A Monte Carlo method can refers to a computing 

technique that determines results from many repeating 

random sampling. Scientists who involved in the United 

States nuclear project during World War II are often regarded 

as the inventors of the Monte Carlo method [8], [9]. The 

method is very useful when it is difficult or impossible to 

obtain closed form solutions. This method has been 

successfully applied to many scientific problems including 

the weapon effectiveness and target coverage topics. In most 

applications, Monte Carlo simulations are carried out by 

computer programs for computing speed. 
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From the next section, the paper is outlined as follows. 

Section II briefly explains the calculation steps in a Monte 

Carlo simulation to determine the probability of damage for 

multiple shots against area targets. Section III describes the 

Carleton damage function and how its parameters are 

determined. Section IV describes a case study. The results are 

presented and discussed in Section V. Section VI summarizes 

the paper.



  

Fig. 1 illustrates the process of a Monte Carlo simulation to 

determine the probability of damage on targets inflicted by 

multiple shots of weapons. First, the target geometry must be 

defined. Next a boundary box that encloses all targets is 

created and grid points are generated uniformly inside the 

boundary box. These grid points serve as integration points to 

calculate the damage value of the whole target. Refinement 

of the grid depends on the shapes of targets and complication 

of the damage function. Then the Monte Carlo simulation is 

performed for several runs.  

In each Monte Carlo run, the impact points of all shots are 

randomized in accordance with the weapon delivery 

accuracy. The probability of damage at each grid point can be 

determined by (1) and the probability of damage of the whole 

target in this run is determined by (2). after all runs have been 

performed, the result of the simulation can be calculated from 

the mean of results in all runs, as given in (3). Note that the 

probability of damage normally ranges from 0 (unharmed) to 

1.0 (completely destroyed). 
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Fig. 1. Overall process of a Monte Carlo simulation. 

The validity of the results of Monte Carlo simulations 

depends on the number of runs performed in the simulation 

[10], [11]. A confidence interval CI of the simulation result is 

given in (4). 
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where  

Z1-α/2 = Z value at 1-α/2 confidence level 

std = standard deviation of samples 

 

III. CARLETON DAMAGE FUNCTION 

In the Carleton damage function, a bivariate Gaussian 

distribution of Pk value in range and deflection direction is 

assumed. The Pk value from one shot impacted at a point (x, y) 

is given in (5). This Pk value is used in (1).  
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x = distance in range from impact point 

y = distance in deflection from impact point  

Rx = constant related to weapon lethality in range direction 

Ry = constant related to weapon lethality in deflection 

direction 

IV. CASE STUDY 

A. Description 

A problem of firing multiple shots of an artillery weapon 

against an area target was chosen as a case study. Two sets of 

Monte Carlo simulations to determine the probability of 

damage on a target were performed. The first set utilized a 

non-simplified Pk matrix, which is treated as a high fidelity 

model. The second set utilized the Carleton function. Each 

sets were performed for 10, 20, 30 shots and 2 targets of the 

same shape and proportion but different size. A set of impact 

points was generated for all runs and used for both sets of the 

simulations. So the difference between the results from the 

first set and the second set could be determined. In total, 6 

Monte Carlo simulations have been performed for each 

simulation set. Each Monte Carlo simulation comprised 

10000 runs. The simulations were carried out in a 

MATLAB® program.  

Because the result of a Monte Carlo simulation is in fact 

the mean of results in all runs, a paired t-test can be 

conducted to test the difference between the results of two 

Monte Carlo simulations that employed Pk matrix and the 

Carleton function on the same target and same number of 

shots using the same set of pre-generated impact points. The 

comparison is similar to a paired observation that the same 

sample group (same impact points) receives both treatments 

(Pk matrix and the Carleton function) and has a number of 
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di = probability of damage at grid point ith

ps = Pk value at grid point ith done by sth shot

dtotal = probability of damage on target in each run

dtotal,k = probability of damage on target in kth run

D = probability of damage on target

M = total number of grid points inside target

N = total number of runs in a simulation

where

p(x, y) = probability of damage at point (x, y)



  

pairs of observations (probability of damage on target in each 

run). Totally, 6 paired t-tests have been performed in the case 

study.  

Let μ1 be the result of a Monte Carlo simulation that 

employs the Pk matrix, μ2 be the result of a Monte Carlo 

simulation that employs the Carleton function, μd be the mean 

of the difference between the paired results, which is equal to 

μ1 – μ2 since the observations are paired. The following null 

hypothesis H0 and alternative hypothesis H1 were tested at the 

0.01 significance level. 

 

H0:  μd = 0 

H1:  μd ≠ 0 

B. Weapon 

A weapon chosen for the case study was a research 

fragmentation warhead. Fig. 2 presents the contour of the Pk 

matrix of the weapon when the detonation point is at (0, 0). 

Only half of the figure is presented because the figure is 

symmetrical about the range axis. The lethal area AL of the 

warhead was calculated by (6), as defined in several 

literatures [3], [5], [6]. Note that p(x, y) is the probability of 

kill at a point(x,y), which is used in (1). Because the 

resolution of the grid could affect the value of the lethal area 

calculated by (6), a grid refinement study was carried out. It 

was found that the value of lethal area approached 6192 m2 

and a grid size of 0.6 m is appropriate for the simulations. 
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Fig. 2. Lethality of the warhead by Pk matrix. 

 

C. Parameters of Carleton Function 

The constants of the Carleton damage function could be 

determined by applying a regression technique [12] on the 

data in the Pk matrix. But for the two parameters Carleton 

function employed in this paper, Rx and Ry were simply 

determined by a guideline described in Driels [6]. The key 

points are that the lethal area must be conserved and a ratio a 

between Rx and Ry is a function of impact angle I as given in 

(7). In all simulations, Rx = 24.87 m and Ry = 80.97 m were 

used. 

 Ia cos.,.max 80130                          (7) 

 

In the simulations, all grid points located outside an ellipse, 

of which the center is at the impact point and the major and 

minor axes are 6Rx and 6Ry, were neglected because the Pk 

value would be very small. A grid refinement study was also 

conducted to ensure that the lethal area, as given in (6), 

calculated by the Carleton function is equal the lethal area 

calculated by Pk matrix. In addition, it was found that the 

Carleton function actually required much coarser grid size, 

and hence much less calculation time. But to eliminate any 

effect on the results caused by different grid size, the same 

grid size of 0.6 m was used in both simulations that employed 

Pk matrix and the Carleton function.  

D. Targets 

The targets in the case study were a rectangular area 

orientated at 30° from the range axis as shown in Fig. 3. The 

target was assumed to be uniformly valued. All shots were 

aimed at the centroid of the target area. The simulations were 

performed on two targets that have similar shape and 

proportion but different size. The area of the first target is 

15000 m2, which is approximately 2.5 times of the weapon 

lethal area. The area of the second target is 7500 m2, which is 

1.2 times of the weapon lethal area. 

 

Target 1

Area = 15000 m2

30 

Target 2

Area = 7500 m2

30 

Deflection Direction

Range Direction  
Fig. 3. Targets. 

 

E. Delivery Errors 

The impact points of all shots were generated randomly in 

accordance with REP (Range Error Probable) and DEP 

(Deflection Error Probable). Two types of errors were 

considered. They are bias errors and dispersion errors. The 

bias errors affect all shots equally while the dispersion errors 

affect each round individually. Both types of errors were 

assumed to be bivariate Gaussian distributed. In this case 

study, we assumed following REP and DEP of bias and 

dispersion errors:  

Bias Error:    REP = 30 m   DEP = 30 m  

Dispersion Error:   REP = 150 m   DEP = 50 m 
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V. RESULTS 
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Fig. 4. An example of impact points in one run. 
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Fig. 5. Simulation results monitored during the calculation. 

 

The results of all simulations from 10000 runs are 

presented in Fig. 6 and the difference between the results is 

summarized in Table I and Table II. Overall, the results of the 

simulations that utilized the Carleton function were 2 to 4% 

lower than the results of the simulations that utilized Pk 

matrix in all cases of target sizes and number of shots. The 

time required for the simulations that employed Pk matrix 

was much greater than the simulations that employed the 

Carleton function. But calculation time also depends on the 

algorithms, which is not the focus of this paper. 
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Fig. 6. Simulation results. 

 

TABLE I: RESULTS OF SIMULATIONS ON TARGET 1 

Mean Std Dev Mean Std Dev Mean Std Dev

10 0.3253 0.1730 0.3119 0.1731 0.0134 0.0366

20 0.5419 0.1760 0.5245 0.1799 0.0174 0.0424

30 0.6857 0.1576 0.6690 0.1636 0.0167 0.0421

# shots
Use Pk Matrix

Use Carleton 

Function
Difference

 
 

TABLE II: RESULTS OF SIMULATIONS ON TARGET 2 

Ave Std Dev Ave Std Dev Ave Std Dev

10 0.3347 0.2057 0.3206 0.2123 0.0141 0.0579

20 0.5562 0.2060 0.5376 0.2172 0.0186 0.0635

30 0.7009 0.1808 0.6827 0.1937 0.0182 0.0602

# shots
Use Pk Matrix

Use Carleton 

Function
Difference
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An example of the impact points generated for one Monte 

Carlo run is presented in Fig. 4. The yellowed area indicates 

the target area and the red X marker denotes the impact point

and the number denotes the shot id number. Fig. 5 shows the 

mean of the results from the first run to the current run 

monitored during the simulation. In all simulations, the result 

approached the final value within 3000 runs approximately.

A paired t-test was performed in Minitab® R14 for each 

pair of the results of two simulations that employed Pk matrix 

and the Carleton function on the same number of shots and 

target sizes. Totally, 6 comparisons were performed. In all 

comparisons, p-value was less than the significant level of 

0.01. So the null hypothesis was rejected and the alternative 

hypothesis could be accepted. It could be suggested that the 

difference between two means of the simulations is 

statistically significant. Fig. 7 shows the 99% confidence 

interval of the difference mean, as given in (4). In any case, 

the interval the mean of the differences did not include zero

and was always positive. So the results of the simulations that 



  

employed Pk matrix were higher than the results of the same 

simulations that employed the Carleton function. 

In addition, the histograms of the difference between the 

results in each pair of two simulation results were examined. 

The histograms of the simulations on target 1 are presented in 

Fig. 8 to Fig. 10. The histograms for the simulations on target 

2 are presented in Fig. 11 to Fig. 13. All histograms show that 

the difference between the results in each run was normally 

distributed so the paired t-test should be valid. 
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Fig. 7. The 99% confidence interval of the difference between the results. 
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Fig. 8. Histogram of difference – 10 shots against target 1. 
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Fig. 9. Histogram of difference – 20 shots against target 1. 
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Fig. 10. Histogram of difference – 30 shots against target 1. 

-0.2 -0.1 0 0.1 0.2 0.3
0

200

400

600

800

Difference between results

F
re

q
u
en

cy

 
Fig. 11. Histogram of difference – 10 shots against target 2. 
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Fig. 12. Histogram of difference – 20 shots against target 2. 
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Fig. 13. Histogram of difference – 30 shots against target 2. 

 

Very small differences can be detected as statistically 

significance in t-tests when the sample size are large, which 

is the case of Monte Carlo simulations. Therefore, it is 

important to investigate the effect size following the rejection 

of the null hypothesis. An effect size, Cohen's d [13], was 

examined for all comparisons in the case study. The value of 

Cohen's d was determined by (8), where diffX is the mean 

and SDdiff is the standard deviation of the differences. 

 

diff

diff

SD

X
d 

                                   
(8) 

 Table III shows the value of Cohen’s d calculated in all six 

comparisons. The value of Cohen’s d ranges from 0.36 to 

0.41 in target 1 cases and from 0.24 to 0.30 in target 2 cases. 

So the effect size in target 1 cases was larger than in target 2 

cases. By a common guideline [13], the effect size is 

considered small for the simulations on Target 1 and between 

small and medium for the simulations on Target 2. 

Based on Cohen’s d in presented Table III, the difference 

between the results of Monte Carlo simulations that employ 

Pk matrix and the results of the same simulations that employ 

the Carleton function was small. It could be recommended 

that Carleton function be used in Monte Carlo simulations 

instead of a non-simplified Pk matrix because it requires 
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coarser grid and less computing time, which is a critical 

concern in a battlefield. However, users of the Carleton 

function should be aware that small difference does exist. 
 

 

 
 

VI. CONCLUSION 

Two sets Monte Carlo simulations to determine the 

probability of damage were performed in a case study of 

multiple shots of unguided weapon against a uniform value 

area target. The first set of the simulations utilized a Pk 

matrix and the second set utilized the Carleton damage 

function, of which parameters were determined based on a Pk 

matrix. The simulations were performed for 10, 20, and 30 

shots and 2 targets, of which the area is about 2.5 and 1.2 

times of the weapon lethal area. Each simulation comprised 

10000 runs. Both sets of simulations used the same impact 

points that were randomly generated in accordance with the 

weapon deliver accuracy. Totally, 6 paired t-tests were 

carried out and there was statistically difference between the 

simulation results that utilized the Pk matrix and the Carleton 

function. Furthermore, the effect size was investigated and it 

was suggested that the effect was small or almost medium in 

all comparisons. So it could be recommended that the 

Carleton be used in a simulation if the computing speed is 

concerned. 
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TABLE III: COHEN’S D VALUES

# Shots Target 1 Target 2

10 0.367 0.243

20 0.410 0.293

30 0.396 0.303


