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Abstract—Heisenberg proved that uncertainty in 

measurement of position and momentum is 

because ( . . ) ( ) ( )x p p x x i x     , i.e. position and momentum 

operator do not compute. Aim of the paper is to make position 

and momentum compute and prove uncertainty do not exists if 

the position and momentum is considered in complex plane.  In 

this paper it is proved that if we take the position and 

momentum to complex plane, position and momentum operator 

compute, i.e. it is equal to zero. Similarly it is proved that if 

energy and time component are considered in complex plane 

uncertainty can be eliminated. This lead to conclusion that 

energy, time, position and velocity are not real values but 

complex values. 

 

Index Terms—Heisenberg uncertainty principle, complex 

plane, certainty principle, Wirtinger derivatives. 

 

I. HEISENBERG UNCERTAINTY PRINCIPLE 

In Heisenberg uncertainty principle (in one dimension) 

value of psi  is considers as  

 
(kx t)ie  

 
 

And momentum operator as  

 

d
p i

dx
  

 
 

Heisenberg proved that  

 

( . . ) ( ) ( )x p p x x i x                           (1) 

 

From above equations we can see that position and 

momentum do not compute, hence it was concluded that 

position x and momentum p, cannot be known 

simultaneously. Werner Heisenberg stated that the more 

precisely the position of some particle is determined, the less 

precisely its momentum can be known, and vice versa [1]. 

So to remove uncertainty one would have to prove that 

position and momentum compute. 

 

II. COMPLEX SPACE COORDINATES  
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Space coordinates for entity above can be written 

as }{ rx and in vector notation ixr r


  

Now suppose space is curved in proximity of entity as 

shown below. 
 

 
Fig. 1. Entity in one dimensional world. 

 

 
Fig. 2. Entity in 1 dimensional world but in curved space time. 

 

If you want to find space coordinates you cannot use 

previous approach because space coordinate cannot be only 

expressed in terms of }{ rx now you would think it’s easy to 

express space coordinate in 2 dimension and express position 

in terms of },{ yx but as told earlier entity is in one 

dimensional world. This can be resolved when we modify the 

diagram as shown below. 

 

 
Fig. 3. Entity in 1 dimensional world but in curved space time. 

 

 

Now this can be extended easily to three dimensional 

world, space coordinate as 

 

 { + , +  , +  } r i r i r ix jx y jy z jz
 

And in Vector notation as 

Certainty Principle Using Complex Plane 

Bhushan Poojary 

From paper Fine structure decoded [2], the space 

coordinates in 3 dimensions can be expressed as (x, y, z). For 

simplicity, imagine an entity in one dimensional world just as 

shown in diagram below.

Now we can say that entity is in one dimension but it’s in 

complex plane. The space coordinates can now be expressed 

in real and imaginary number{ , } r ix x .In terms of vector it 

can be written a    + r ir x i jx i
 

.Hence we can write space 

coordinates as{ + }xr jxi or{< , >}xr xi

http://en.wikipedia.org/wiki/Position_(vector)
http://en.wikipedia.org/wiki/Momentum
http://en.wikipedia.org/wiki/Werner_Heisenberg


  

 

 
 

 

 

  

 

 

   
 

 

 

 

 

  

 

 
 

 

 
   

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

   

 

 

 

 

International Journal of Applied Physics and Mathematics, Vol. 4, No. 4, July 2014

252

  

 

 
 

 

 

   
 

 

 

 

 

 

 

 

 

  

 

 

 
 

 

 

 

 

 

  
 

 
   

 

 

 

 

 

 

 

 

 

 
 

 

  

 

 

 

 

 

 

 

 

 

 

   

 
 

 
   

 

 
   

 

 

 

  

 = ( + )   + ( + )   + ( + )r i r i r ir x ix i y iy j z iz k 
 

        (2) 

 
From above Fig. 1-Fig. 3 we can say that electron/positron 

also moves in imaginary plane. So we should consider 

imaginary and real plane while computing position and 

momentum vectors to get overall picture. 

 

III.  IN TERMS OF COMPLEX PLANE 

If we consider only one dimension we can express electron 

positron in terms of complex variable χ = +r ix ix , where rx  

is position in real plane (external) and ix  in imaginary plane 

(internal). So we can write Ψ in terms of complex as shown 

below. 

 

(k t)ie   
                            (3) 

 

IV. HEISENBERG EQUATION IN COMPLEX PLANE 

 

 

( . . ) ( ) ( )x p p x x i x    
 

 

where momentum operator is depended upon partial derivate 

of x and this x is what we measure i.e. the distance of element 

from the observer in real plane. From fine structure decoded 

paper it was proved that psi   can be termed as electron 

movement in imaginary plane say ix . 

When electron is in imaginary plane by xiamount, than 

from the diagram below we can say that what we measure 

would byless than xi. So we can say that 
r ix ix   .Where  

is the distance measured from the observer in complex plane 

(see Fig. 4). 
 

 
Fig. 4. Measurement in complex plane. 

 

Actual measurement of the element from the observer 

would be r ix ix  .This is directlylinked to the element 

hence this should become the multiplying factor 

Equation of Heisenberg in complex plane would look like 

this. 

 

( )x
  

 
  

  
 

                           (4) 

 

( )x









 

According to Wirtinger derivatives [3] 

 

1

2
i

z x y

   
  

     
 

Hence we can say that 

  

(z)
0

f

z





 

 

which is to say that, roughly, f is functionally independent 

from the complex conjugate of z. 

From above equation we can say that 

 

( ) 0x


 






                                  (5) 

 

 

 

V. SINGLE SLIT EXPLAINED 

When a monochromatic light is incident on a slit geometric 

optics predicts we will get a slit kind of image at the other 

side of the image as show in Fig. 5. 
 

 
Fig. 5. Geometric optics prediction of single slit experiment. 

 

 
Fig. 6. Actual output of single slit experiment. 

 

But actually it’s not true actual picture is as shown below. 

When the slit window is comparable to incident photon 

wavelength we get above output. This phenomenon was 

explained with help of Heisenberg uncertainty principle, by 

stating that photon exact momentum and position cannot be 

found precisely simultaneously.  But with help of complex 

plane this phenomenon can be explained too. If you see Fig. 7, 

From Eq. (5) we can say that if we consider element in 

complex plane we can say there is no uncertainty in physics, 

as we have taken momentum operator and position to 

complex plane.From Eq. (1) we have 
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there is main spread of photon in centre. At m1 the measured 

photon momentum is P and at the centre its px. And vertical 

component is termed as py.  

If you imagine photon travelling in x direction real plane 

and vibrating in complex plane say in y axis. 
 

 
Fig. 7. Single slit intensity plot. 

 

where momentum at m1 is written as  

 

x yp p p   

 

But according to complex plane theory py is ipyi 

That’s why we can write 

 

x yip p ip   

 

Similarly if we consider all complex plane we get 

 

X X Y YI Z ZIP p ip p ip p ip       

 

And position vector can be expressed as  

R X R I R Ir x ix y iy z iz       

 

From above equations it is clear that momentum is not only 

in real plane but in complex plane. When we consider this we 

get diffraction pattern as predicted by Heisenberg. 

 

VI. ENERGY TIME UNCERTAINTY EXPLANED 

Energy equation in terms of momentum is given be 

equation below [4] 

 
2 2 2 2( ) ( )E mc pc 

 
 

In above equation only the real component of momentum 

is considered, if we consider imaginary plane as well above 

equation would look like this 

2 2 2 2( ) (| | )E mc P c 
 

where  

r iP p ip   and 
2 2| | r iP p p 

 
 

Hence we can write energy equation as 

 
2 2 2 2 2 2( ) ( )( )r iE mc p p c  

 
 

From above equation it is clear that energy also has one 

real and one imaginary component. 

Time is measured as inverse of frequency, frequency 

means vibration and vibrations in real world means the time 

component which we consider is only of real plane not of 

imaginary plane. Hence time can also be considered in 

complex plane as shown below. 

 

r it it    
 

To prove energy time uncertainty wrong we will have to 

commute energy time in complex plane. 

In real plane energy and time do not commute and equation 

looks like this. 

 

( . . ) ( , ) ( , )t E E t x t i x t    
 

 

where Ê energy operator termed as [5] 

E i
t





 

 

If we consider we consider energy and time in complex 

plane equation would look like this. 

 

( , )x t
  

  
  

  
 

 

( , )x t


 






 

 

From Wirtinger derivatives equations as proved in position 

momentum the above term can be considered as zero.Hence 

we can say 

 

( , ) 0x t
  
  

  
  

 
 

 

From above we can conclude that energy time uncertainty 

vanishes if we consider energy and time in complex plane. 

 

VII. QUANTUM TUNNELLING EFFECT EXPLAINED 

Quantum tunnelling effect is explained with help of 

Heisenberg uncertainty principle.  

Our goal is to explain this effect with help of complex 

plane [6]. 

Ψ(x) plot is shown below in tunnelling effect. 

In above experiment energy E of the particle is only the 

real component of the energy which is kinetic energy. As 

shown in Fig. 8 at the end of the barrier Ψ(x) is Ψ exit. So if 
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we consider the Ψ exit has the imaginary component xi at the 

exit, we can say there is momentum component in imaginary 

plane at the end of the barrier. 

 

 
Fig. 8. Plot of Ψ(x) in quantum tunnelling effect. 

 

So we should consider this complex plane momentum 

because it adds additional energy to particle. Hence we can 

safely say that when complex energy of the particle is greater 

than the barrier potential the particle escape. 

There is a probabilistic nature here because not all wave of 

particle will enter is same phase. 

Similarly we can explain all phenomenon’s in quantum 

mechanics which were explained with help of Heisenberg 

uncertainty principle with help of complex plane. 
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