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 

Abstract—Today the so-called Copenhagen Interpretation of 

quantum mechanics dominated description of the physical 

world still denies the possibility to assign exact simultaneous 

values to (all) physical quantities. A prime example is claimed to 

be the fundamental and universal relationship between position 

and momentum of a particle. According to Heisenberg's 

quantum mechanical uncertainty principle for position and 

momentum, the more precisely the momentum (position) of a 

particle is given, the less precisely can one say what its position 

(momentum) is and vice versa.  

The purpose of this publication is to provide a mathematical 

proof that Heisenberg's uncertainty principle for position and 

momentum is refuted under any circumstances. As we shall see, 

accept Heisenberg's uncertainty principle as valid then you 

must accept too that +0 = +1, which is a logical contradiction. 

Thus far, it is possible to derive a logical contradiction out of 

Heisenberg's uncertainty principle. Heisenberg's uncertainty 

principle is refuted. 

 

Index Terms—Causality, quantum mechanics, special and 

general relativity, unified field theory.  

 

I. INTRODUCTION 

Quantum mechanics, still dominated by the so-called 

Copenhagen interpretation, is perhaps the most successful 

theory in the history of mankind. But it is also a theory which 

violates some fundamental principles of modern science too, 

in particular the principle of causality. Heisenberg's 

uncertainty principle [1], as one of the most important and 

famous aspects of quantum mechanics, is the striking aspect 

of the differences between a causal and the Copenhagen 

interpretation of quantum mechanics dominated non-causal 

understanding of the physical world and objective reality as 

such. 

According to Heisenberg's uncertainty principle (for 

position and momentum) we cannot assign exact 

simultaneous values to the position and momentum of a 

physical system. Position and momentum can only be 

determined with some characteristic 'uncertainties'.  In last 

consequence, even the relationship between cause and effect 

can be determined only with some characteristic 

'uncertainties'. Due to this logical or philosophical 

implication of Heisenberg's uncertainty principle, a 

deterministic relationship between cause and effect cannot be 

accepted. Consequently, due to Heisenberg, we must regard 

the principle of causality as refuted. 
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II. MATERIAL AND METHODS 

There are several different, mathematical formulations of 

Heisenberg's uncertainty principle. 

A. Heisenberg's Uncertainty Principle 

One striking aspect of today's fundamental and universal 

description of the physical world as provided by quantum 

mechanics is Heisenberg's uncertainty principle. The 

principle as proposed by Heisenberg became soon considered 

to be a cornerstone of the Copenhagen interpretation of 

quantum mechanics and of science as such. The argument 

that led Heisenberg to his formulation of the uncertainty 

principle can be found in an article of 1927, entitled as “Über 

den anschaulichen Inhalt der quantentheoretischen 

Kinematik und Mechanik”. 
 

TABLE I: HEISENBERG’S UNCERTAINTY PRINCIPLE 

     

  

“Im Augenblick der Ortsbestimmung ... verändert das 

Elektron seinen Impuls unstetig. Diese Änderung ist um so 

größer, je kleiner die Wellenlänge des benutzten Lichtes, d. 

h. je genauer die Ortsbestimmung ist ... also je genauer der 

Ort bestimmt ist, desto ungenauer ist der Impuls bekannt 

und umgekehrt.” [1] 

 

  

     

 

Translated into English, Heisenberg summarized his 

findings in a general conclusion: 

  

“When the position is determined .. the electron undergoes 

a discontinuous change in momentum. This change is the 

greater the smaller the wavelength of the light employed, i.e., 

the more exact the determination of the position ... thus, the 

more precisely the position is determined, the less precisely 

the momentum is known, and conversely” 

 

Heisenberg's transition from a deterministic science to an 

indeterministic science marks a drastically change in our 

everyday's understanding of the physical world. But it may be 

useful to point out that Heisenberg himself did not provide a 

general and exact mathematical derivation of his uncertainty 

principle. Due to his uncertainty principle, Heisenberg 

estimated the “imprecisions” based only on qualitative 

example [1] to be of the order 

 

hqp ~
11

                                (1) 

 

where p1 denotes something like the mean error of the 

momentum p and q1 denotes something like the mean error of 

the position while h denotes Planck's constant. Heisenberg 

Anti Heisenberg – Refutation of Heisenberg’s Uncertainty 

Principle 

Ilija Barukčić 



  

 

  

 

 

 

 

   

     

  

 

 

  

     

 

 

   

     

  

 

 

  

     

 

 

  

 

 

 

 

 

   

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

International Journal of Applied Physics and Mathematics, Vol. 4, No. 4, July 2014

245

  

himself did not give a precise and general mathematical 

definition of his uncertainty principle.  

The first mathematically exact formulation of Heisenberg's 

uncertainty principle is due to Kennard. Heisenberg's 

uncertainty principle for position and momentum as derived 

by Kennard [2] and advocated by Heisenberg himself is  

 

   
4

h
X p  


 


                             (2) 

 

where ( X ) denotes the standard deviation of position, (p) 

denotes the standard deviation of momentum, h denotes 

Planck's constant and  denotes today as mathematical 

constant known value pi.  

In his Chicago Lectures Heisenberg presented Kennard's 

derivation of his own uncertainty principle and claimed that 

Kennard's proof “does not differ at all in mathematical 

content” [3] from his own argument presented earlier (1927). 

There is only a very important and notable difference. 

Kennard's proof is mathematically exact. In fact, it is clear 

that in Heisenberg's own view all the above questions stand 

or fall together. 

B. Heisenberg's Uncertainty Principle and Causality 

The lack of causality within the so-called Copenhagen 

interpretation dominated quantum mechanics is grounded on 

Heisenberg's position too. Heisenberg states at the end of his 

historical paper  
 

TABLE II: HEISENBERG AND CAUSALITY 

     

  

“Weil alle Experimente den Gesetzen der 

Quantenmechanik und damit der Gleichung (1) 

unterworfen sind, so wird durch  die Quantenmechanik die 

Ungültigkeit des Kausalgesetzes definitiv festgestellt.” [4] 

 

  

     

 

Heisenberg points out that all experiments are governed by 

the laws of quantum mechanics and thus far by his equation 

(1) which is identical with his uncertainty relation/principle. 

Hence, because of this quantum mechanics has refuted the 

most important of all scientific principles, the principle of 

causality, definitely.  

Just about 10 years later, Bohr demands something similar. 
 

TABLE III: BOHR AND CAUSALITY 

     

  

“ it is no longer possible sharply to distinguish between 

the ... behavior of a physical object and its inevitable 

interaction with other bodies serving as measuring 

instruments ... physics ... forces us to replace ... causality 

by ... 'complementarity.' .” [5]
 

 

  

     

 

However, these generalizations of Heisenberg and Bohr 

are not as straightforward as Heisenberg and Bohr suggested. 

C. Robertson Uncertainty Relation 

Robertson [6] derived from fundamental postulates of 

today’s quantum mechanics an uncertainty relation valid for 

any observable A and B and any state  generally as 

   
 ,

, ,
2

A B
A B 

 
                 (3) 

 

where the variance (X, )² of an observable X in state  is 

defined by (X, )² = < | X² |> - < | X |> ².  

D. Ozawa’s Inezquality 

In 2003 Masanao Ozawa [7] (Nagoya University, Japan) 

published a new “universally valid” uncertainty relation 

derived mathematically from quantum measurement theory. 

According to Ozawa, the new “universally valid” 

formulation Heisenberg's uncertainty principle describes 

error and disturbance as well as fluctuations as 

 

           
4

h
A B A B A B     


     


    (4) 

 

where (A) denotes the root-mean square error of an arbitrary 

measurement for an observable A, (A) denotes the standard 

deviations of A in the state  just before the measurement, 

(B) denotes  the standard deviations of B in the state  just 

before the measurement and (B) denotes the 

root-mean-square disturbance on another observable B 

induced by the measurement. 

 

III. RESULTS 

A. Refutation of Heisenberg's Uncertainty Principle I 

Claim  

Heisenberg's uncertainty principle is logically and 

mathematically not correct. Thus far, accept Heisenberg's 

uncertainty principle as valid then you must  accept too that 

 

.0~1                                              (5) 

 

Proof by contradiction 

As usual, the starting point of our proof by contradiction is 

the opposite of the claim above. We are sure and accepting 

that Heisenberg's uncertainty principle is logically and 

mathematically correct. Consequently, we are not able to 

derive any logical contradiction out of Heisenberg's 

uncertainty principle. Especially, Heisenberg's uncertainty 

principle known as  

 

hqp ~
11

                                      (6) 

 

is generally valid. After subtraction of h, we obtain 

 

hhhqp  ~
11                                (7) 

 

which is equivalent to 

 

.0~
11
hqp                                 (8) 

 

The left term is different from zero. Dividing by the left 
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term, it follows that 

 

hqphqp

hqp





1111

11
0

~                    (9) 

 

or at the end 

 

0~1                                           (10) 

 

which is a logical contradiction. 

Q. e. d. 

B. Refutation of Heisenberg's Uncertainty Principle II  

Claim 

Heisenberg's uncertainty principle is logically and 

mathematically not correct. Heisenberg's uncertainty 

principle leads to a contradiction and is based on a 

contradiction. If you accept Heisenberg's uncertainty 

principle as valid then you must accept too that 

 

.01                                         (11) 

 

Proof by contradiction 

Following the rules of a proof by contradiction, the starting 

point of our proof is once again the opposite of the claim 

above. Our position is that Heisenberg's uncertainty principle 

is logically and mathematically correct. Consequently, it is 

not possible at all to derive any kind of a logical contradiction 

out of Heisenberg's uncertainty principle. Heisenberg's 

uncertainty principle is known as  

 

   






4

h
pX                           (12) 

 

and as such formulated in the form of a non-strict inequality. 

The same uncertainty principle is logically and 

mathematically correct if  

 

   






4

h
pX                           (13) 

 

and if 

 

    .
4 





h

pX                          (14) 

 

Clearly, both cannot be regarded as being correct at the 

same time, which does not make Heisenberg's uncertainty 

principle logically and mathematically inconsistent as such. 

The following table illustrates the last relationship. 
 

TABLE IV: HEISENBERG UNCERTAINTY PRINCIPLE 

     

     

    X p   >  / 4h    

     

Without loss of generality, we must now consider that this 

strict inequality demands on this account, that there is a 

Heisenberg’s term (may be of unknown magnitude) denoted 

as H, which has to be greater than zero or H > 0 which 

transfers this inequality into an equality. 

The following table illustrates the last relationship. 
 

TABLE V: HEISENBERG UNCERTAINTY PRINCIPLE 

     

     

   
H > 0 

 

    

    pX    =  4/h   

     

     

 

In other words, as may readily be verified, Heisenberg's 

uncertainty principle, treated as logically and mathematically 

correct demands thus far equally, that 

 

    ).0(
4




 H
h

pX


             (15) 

 

At the same time it is true that 

 

    .
4 





h

pX                     (16) 

 

After substitution, one then finds straightforwardly that  

 

).0(
44







H
hh


                      (17) 

 

Subtracting the term h/(4 x ), we obtain 

 

)0(
4444













H
hhhh


          (18) 

 

or  

 

                ).0(0  H                         (19) 

 

After division by (H > 0),  it is 

 

.
)0(

)0(

)0(

0






 H

H

H
                       (20) 

 

or 

 

.10                                   (21) 

 

Q. e. d. 

In general, it appears to be very difficult to accept that our 

world is grounded on a logical contradiction +0 = +1, which 

is exactly what Heisenberg's uncertainty principle demands. 

Thus far, contrary to our starting point and in contrast to our 

expectation, we were able to derive a logical contradiction 

out of Heisenberg's uncertainty principle. Heisenberg's 

uncertainty principle is refuted. 
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C. Refutation of Robertson’s Uncertainty Relation 

Many times, the Robertson uncertainty relation is regarded 

as the general form of Heisenberg’s uncertainty relation. 

Claim 

The Robertson uncertainty relation is logically and 

mathematically incorrect. If you accept Robertson’s 

uncertainty relation as generally valid then you must accept 

too that  

 

.10                                     (22) 

 

Proof by contradiction 

The Robertson uncertainty is generally formulated as 

 

   
 ,

, ,
2

A B
A B 

 
                      (23) 

 

where the variance (X, )² of an observable X in state  is 

defined by (X, )² = < | X² |> - < | X |> ². As a 

non-strict inequality, Robertson uncertainty relation is 

determined by the fact that 

 

   
 ,

, ,
2

A B
A B 

 
                       (24) 

 

and that  

 

   
 ,

, ,
2

A B
A B 

 
                    (25) 

 

The strict form of Robertson uncertainty relation can be 

illustrated as follows. 
 

TABLE VI: ROBERTSON’S UNCERTAINTY RELATION 

     

     

     ,, BA   > 
 ,

2

A B 
  

     

 

TABLE VII: ROBERTSON’S UNCERTAINTY RELATION 

     

   R > 0  

 
    ,, BA 

 
= 

 ,

2

A B 
  

     

 

 

 

 

 

Consequently, Robertson’s relation may be written as the 

superposition of a known and an unknown term as 

 

   
 

 
,

, , 0
2

A B
A B R   

 
             (26) 

 

From above, we must equally accept that 

 

   
 ,

, ,
2

A B
A B 

 
                        (27) 

 

Substituting this relationship into the equation before, we 

obtain 

 

   
 

, ,
0

2 2

A B A B
R  

   
               (28) 

 

Subtracting  

   

   
 

, ,

2 2

, ,
0

2 2

A B A B

A B A B
R



   

   

   

         (29) 

and collecting together terms, we obtain 

 

 0 0R                                        (30) 

 

Dividing by (R > 0) we must accept that 

 

0 ( 0)

( 0) ( 0)

R

R R

 


   
                              (31) 

 

or 

 

.10                              (32) 

 

Q. e. d. 

A logical contradiction is something we try to avoid. In 

particular, in our today’s understanding of the foundations of 

science as such, logical contradictions cannot be accepted. 

In other words, as already verified by the direct proof 

above, Robertson uncertainty relation leads to a logical 

contradiction and is based on a logical contradiction. 

Robertson uncertainty relation, the general form of 

Heisenberg’s uncertainty relation, is refuted. 

D. Refutation of Ozawa’s New ‘Universally Valid’ 

Uncertainty Relation   

Claim 

Ozawa’s new “universally valid” uncertainty relation is 

neither logically nor mathematically correct. Ozawa’s new 

“universally valid” uncertainty relation is based on a 

contradiction and leads to a contradiction. If we accept 

Ozawa’s new “universally valid” uncertainty relation as 

generally valid and correct, then we must accept too that 

 

.10                                       (33) 

This strict inequality must be consistent with Robertson’s 

equation above too and can thus far be transferred into 

Robertson’s equation above without any loss of generality. 

To proceed further, we assume that there is a Robertson’s 

term (may be of unknown magnitude) denoted as R, which 

has to be greater than zero or R > 0 and which transfers this 

Robertson’s inequality into an equality.  The following 

picture illustrates this far reaching relationship once again to 

achieve another point of view.
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Proof by contradiction 

Once again, according to the rules of a proof by 

contradiction, we start with the opposite of the claim above. 

Our position is that Ozawa’s new “universally valid” 

uncertainty relation is mathematically and logically correct. 

Consequently, it is not possible at all to derive any kind of a 

logical contradiction out of Ozawa’s new “universally valid” 

uncertainty relation. Ozawa demands that 

 

            .
4

h
A B A B A B     


     


 (34) 

 

Consequently, accepting of Ozawa’s new “universally 

valid” uncertainty relation as generally valid we must accept 

that 

           
4

h
A B A B A B     


     


 (35) 

 

and that 

 

           
4

h
A B A B A B     


     


 (36) 

 

Illustrating Ozawa’s new “universally valid” uncertainty 

relation, we obtain the following picture. 
 

TABLE VIII: OZAWA’S NEW GENERALLY VALID UNCERTAINTY RELATION 

     

     BA      

     BA      

    BA    > 
4

h
  

     

 

This mathematical formulation of Ozawa’s new 

“universally valid” uncertainty relation in the form of a strict 

inequality cannot contradict the mathematical formulation of 

Ozawa’s new “universally valid” formulated as equality. Let 

us now consider the particular case of this aspect of Ozawa’s 

new “universally valid” uncertainty relation in more detail. 

As discussed previously, this strict inequality of Ozawa’s 

new “universally valid” uncertainty relation can be 

transferred into Ozawa’s equality above without any loss of 

generality. To proceed further, we assume that there is an 

Ozawa’s term (may be of unknown magnitude) denoted as , 

which has to be greater than zero or  > 0 and which 

transfers the strict inequality of Ozawa’s new “universally 

valid” uncertainty relation into an equality. 
 

TABLE IX: OZAWA’S NEW GENERALLY VALID UNCERTAINTY RELATION 

     

     

     BA    
 > 0 

 

     BA     

    BA    = 
4

h
  

     

     

In general, due to Ozawa, we must accept that 

 

           

 0
4

A B A B A B

h

    

  


     



       (37) 

 

Equally, we must accept too, that 

 

           






4

h
BABABA    (38) 

 

Rearranging these equations, we obtain 

 

 0 .
4 4

h h
  

 


 
                             (39) 

 

Further manipulation yields 

 

 0 .
4 4 4 4

h h h h
    

   


   
       (40) 

 

or 

 

 0 0 .                                (41) 

 

After division by ( > 0) it is 

 

 

 

 

00

0 0


  

 



 
                          (42) 

 

or 

 

.10                                  (43) 

 

Q. e. d. 

One quickly finds that Ozawa’s new “universally valid” 

uncertainty relation leads to a logical contradiction and is 

based on a logical contradiction. 

Ozawa’s new “universally valid” uncertainty relation is 

mathematically and logically inconsistent and refuted. 

E. The Relationship between Position and Momentum 

The discovery of the normal distribution is associated with 

names like Abraham de Moivre (1667-1754), Johann Carl 

Friedrich Gauß (1777-1855) and Pierre-Simon, marquis de 

Laplace (1749-1827). The importance of the normal 

distribution is backgrounded by the central limit theorem. 

Under some certain conditions, the mean of a random 

variable is distributed approximately normally, 

independently of the form of the original distribution of the 

random variable. A random variable with a Gaussian 

distribution is said to be normally distributed. Thus far, even 

physical quantities like position and momentum often have a 

distribution very close to the normal.  

A normal distribution for position X is described by the 

probability density function p(X = Xt), identical with the 
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square of the wave function |(X, t)|² to find the particle at Xt,  

as 

 

   
 

 

2
( )1

2
2

2
,

2

tX E X

X

t

e
X t p X X

X

 
    

  
 


 

       (44) 

 

where 

E(X) denotes the expectation value of X after many 

measurements of the position Xt under repeated identical 

conditions,  

Xt is the possible interval value of the random variable X,  

 denotes the mathematical constant pi, approximately 

equal to 3.14159, 

(X) denotes the standard deviation of the random variable 

X. 

The normal distribution for momentum P is described by 

the probability density function p(P = Pt), identical with the 

square of the wave function |(P, t)|² to find that particle’s 

momentum is equal to Pt, as 

 

   
 

 

2
( )1

2
2

2
,

2

tP E P

P

t

e
P t p P P

P

 
    

  
 


 

               (45) 

 

where 

E(P) denotes the expectation value of P after many 

measurements of the position Pt under repeated identical 

conditions,  

Pt is the possible interval value of the random variable P,  

 denotes the mathematical constant pi, approximately 

equal to 3.14159, 

(P) denotes the standard deviation of the random variable 

P. 

Claim 

The relationship between position and momentum follows, 

under conditions of the central limit theorem, as 
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Proof 

The standard deviation of the normal random variable X, 

the position, can be derived from 
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as 
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while the standard deviation of the normal random variable P, 

the momentum, is 
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as derived from 
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Multiplying the standard deviation of position and the 

standard deviation of momentum we obtain 
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Rearranging equation, if follows that 
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Q. e. d. 

The equation above is the mathematically correct 

formulation of the relationship between position and 

momentum, if there should be any at all. Only under 

conditions where 
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where h denotes Planck’s constant h, it follows from 
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that 
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IV. DISCUSSION 

In contrast to Heisenberg's claims, Heisenberg's 

uncertainty principle violates some fundamental principles of 

science. Generations of scientists including Einstein himself 

and other philosophers have often accused Heisenberg's 

uncertainty principle of being incorrect but without a 
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refutation in sight.  

Most recently, Heisenberg's uncertainty principle was 

already refuted under some well-defined conditions [8]. 

Meanwhile, Heisenberg's uncertainty principle is refuted 

under any conditions.  

Scientist has to draw a sharp distinction between what is 

correct and what is not correct.  

Heisenberg's uncertainty principle together with the 

several different, mathematical re-formulations of the same 

are proved as not correct and no longer valid.  

Whether the presented formulation of the relationship 

between position and momentum is the one logically 

consistent formulation of the relationship between position 

and momentum is not the point of issue.  

The presented formulation of the relationship between 

position and momentum demonstrates that the solution of this 

problem is possible while the answer to the problem of the 

relationship between position and momentum as given by 

Heisenberg [9] and followers together with the acausal, 

indeterminstic Copenhagen interpretation of quantum 

mechanics is neither mathematically nor logically consistent. 

 

V. CONCLUSION 

Heisenberg's uncertainty principle is refuted in general. 

The anti-causal, anti-determinstic Copenhagen interpretation 

of quantum mechanics has lost its scientific dominance and 

meaning. 
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