
 

 

 

 

Abstract—In data envelopment analysis (DEA), all efficient 

decision making units (DMUs) have the same efficiency score 

which are difficult to discriminate. Cross-efficiency can be used 

to discriminate among efficient-DMUs. It also provides an 

alternative efficiency ranking for inefficient-DMUs. However, 

weight sets used for cross-efficiency may not be proper for 

ranking DMUs. The reason for this is that alternate optimal 

solutions for the weights exist for efficient-DMUs in DEA. The 

weight sets for efficient-DMUs are usually picked arbitrarily by 

linear programming (LP) software within the alternate optimal 

region. It is highly unlikely that those weight sets obtained from 

the LP software are the most suitable for performance measure. 

Therefore, some researchers have proposed using secondary 

objectives to search for more homogeneous or better weight sets 

within the alternate optimal regions. This paper examines four 

of those models and attempts to determine the accuracy of the 

four models in estimating the performance rankings for DMUs 

in DEA. 

 

Index Terms—Cross-efficiency, DEA, efficiency score, 

performance measure. 

 

I. INTRODUCTION 

  

 

 

Max  𝑢𝑟𝑦𝑟0
𝑠
𝑟=1                                  (1) 

 

s. t.   𝑢𝑟𝑦𝑟𝑗 −  𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1 ≤ 0, 𝑗 = 1, . . . , 𝑛,𝑠

𝑟=1           (2) 

 

 𝑣𝑖𝑥𝑖0
𝑚
𝑖=1 = 1,                                     (3) 

 

where ur, vi ≥ 0, r = 1, . . . , s; i = 1, . . . , m, are factor weights 

for output r and input i, respectively. Another version of the 

model requires ur, vi> 0. 

One common problem in DEA is that all efficient-DMUs 

have the same efficiency score which makes it difficult to 

discriminate among efficient-DMUs. Many methods have 

been proposed to rank DMUs, especially efficient-DMUs in 

DEA. A comprehensive review of ranking methods in the 

DEA context is given in [2]. Among the different methods, 

Cross-efficiency [3] is one of the most popular methods for 

ranking DMUs. Cross-efficiency score of a DMU is the 

average of efficiency scores computed by using input weights 

and output weights obtained from all DMUs. However, it is 

well known that alternate optimal solutions of the weights 

 

 

exist for the LP solutions of efficient-DMUs. Which optimal 

weight set is chosen usually depends on which optimal 

solution is first found by the LP software. Different software 

used may result in choosing different weight sets as pointed 

out by [4]. This ample choice of weights in the alternate 

optimal regions makes the first optimal solution found by the 

software not necessarily a good choice for performance 

measure.  

Some secondary objectives [3]-[8] have been proposed to 

search for more homogeneous or better weight sets within the 

alternate optimal regions. Among them [3], [5] proposed four 

LP models using different secondary objectives to determine 

weight sets to compute cross-efficiency scores. However, 

among the four models, which model can provide a more 

accurate performance ranking of DMUs and also how good 

those models when compared to simple cross-efficiency are 

have not been further discussed in the literature. In view of 

this, this paper discusses characteristics of these models and 

also examines their performance via a simulation experiment. 

The main objective of this paper is to find out the 

performance of the four models and how good those models 

are when compared with simple cross-efficiency in providing 

a more accurate performance ranking of DMUs.   

 

II. THE FOUR MODELS 

Instead of using the original weight sets obtained directly 

from DEA, [3], [5] proposed several LP models, each uses a 

secondary objective to determine a new weight set for each 

DMU. We examine four of those models in this paper. In 

general, each of the four models can be divided into two 

stages. Stage one is to obtain simple efficiency, eo for each 

DMUo using DEA. The CCR model [1] can be employed to 

obtain efficiencies for DMUs in stage one. In state two, for 

each decision making unit, DMUo, a secondary objective is 

applied to search for a new weight set for each DMU. The 

stage two formulations of the four models are listed in the 

following paragraphs.  

The Benevolent I (BE-I) model is proposed by [3] and is 

stated as follows:  

 

Max    𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1 −  𝑣𝑖𝑥𝑖𝑗

𝑚
𝑖=1   𝑛

𝑗=1
𝑗≠0

               (4) 

 

s. t.   𝑢𝑟𝑦𝑟𝑗 −  𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1 ≤ 0, 𝑗 = 1, . . . , 𝑛,   𝑠

𝑟=1        (5) 

 

 𝑣𝑖𝑥𝑖0
𝑚
𝑖=1 = 1,                                 (6) 

 

 𝑢𝑟𝑦𝑟0 − 𝑒0  𝑣𝑖𝑥𝑖0
𝑚
𝑖=1 = 0,𝑠

𝑟=1                      (7) 
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Consider n decision making units, DMUj (j = 1, 2, …, n) 

each of which has m inputs xij (i= 1, …, m) and s outputs yrj (r

= 1, …, s). In DEA, DMUs are classified into either efficient 

set (E) or inefficient set 𝐸  . The relative efficiency of each 

DMU0 can be obtained from the following linear 

programming (LP) model [1]:

where ur, vi ≥ 0, r = 1, . . . , s; i = 1, . . . , m;eo is the efficiency 

score of DMUo determined in stage 1. Alternatively, the LP 

formulation of Aggressive I (AG-I) can be obtained by 

changing the objective function of BE-I from maximizing to 

Manuscript received April 24, 2014; revised June 27, 2014.

Kim Fung Lam is with the Department of Management Sciences, City 

University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 

(e-mail: msblam@cityu.edu.hk).



 

 

 

minimizing.  

The Benevolent II (BE-II) model is proposed by [5] and is 

stated as follows:  

Max    𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1   𝑛

𝑗=1
𝑗≠0

                              (8) 

𝑠. 𝑡.     𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1  = 1,𝑛

𝑗=1
𝑗≠0

                         (9) 

 𝑢𝑟𝑦𝑟𝑗 −  𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1 ≤ 0, 𝑗 = 1, . . . , 𝑛,𝑠

𝑟=1              (10) 

 𝑢𝑟𝑦𝑟0 − 𝑒0  𝑣𝑖𝑥𝑖0
𝑚
𝑖=1 = 0,𝑠

𝑟=1                    (11) 

where ur, vi ≥ 0, r = 1, . . . , s; i = 1, . . . , m;eo is the efficiency 

score of DMUo determined in stage 1. Alternatively, the LP 

formulation of Aggressive II (AG-II) can be obtained by 

changing the objective of BE-II from maximizing to 

minimizing. 

 

III. MODEL DISCUSSION 

If the redistribution of resources is based on the 

efficiencies of the DMUs, then the actual resource 

redistribution among the DMUs may be significantly affected 

by which secondary objective are being applied. BE-I and 

BE-II maximize the wellbeing of all DMUs. Their 

performance measures tend to give higher efficiencies to 

most of the DMUs when compared with the aggressive 

models. These objectives may have certain important 

economic interpretation in terms of DMUs’ performance and 

also input and output weights structures, however, it is not 

necessary that the underlying weight structure should 

maximize the wellbeing of all DMUs.  

The objectives of benevolent models are to maximize the 

wellbeing of all DMUs, then it is expected that the chosen 

weight sets should provide higher efficiency scores for most 

DMUs.In general, those weight sets are expected to give 

more balanced virtual inputs and outputs since extremely 

unequal virtual inputs and outputs may tend to lower 

efficiency scores for most DMUs. As a result, extremely 

unequal virtual inputs and outputs are expected to be less 

common in both BE-I and BE-II. As pointed out by [4], it is 

better to use weight sets which have more balanced virtual 

inputs and outputs than extreme virtual inputs and outputs in 

DEA. This is shown in their model which seeks to maximize 

the minimum virtual variables as one of the optimizing 

objectives. Extreme virtual inputs and outputs sometime may 

put most weights on a small number of inputs or outputs. 

Some inputs or outputs may receive zero or close to zero 

virtual values. Using it as an instrument to measure efficiency 

of DMUs is not that appropriate because it may be difficult to 

explain why such an extreme virtual inputs and outputs 

structure exists in a rational economy. Both AG-I and AG-II 

have the tendency to obtain weight sets which produce more 

unequal virtual inputs and outputs. In the next section, we 

conduct a simulation experiment to study the performance of 

the four methods as well as the simple cross-efficiency 

method (SC-E) in the rankings of DMUs.      

 

IV. DESIGN OF THE SIMULATION EXPERIMENT 

In this simulation experiment, we assume that the 

production function follows a simple linear form. We make 

use of the linear production function to generate efficient and 

inefficient DMUs. Then we apply DEA, SC-E and the four 

models to the generated data sets to obtain efficiency 

rankings. The efficiency rankings obtained from all the 

methods are compared with the efficiency ranking generated 

from the original linear production function. Details of our 

simulation experiment are given as follows.  

In the simulation experiment, we assume that the 

production function takes the following linear form:  

 

 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1 =  𝑢𝑟𝑦𝑟𝑗 .  𝑠

𝑟=1                             (12) 

 

In this experiment, we use three inputs, three outputs, and 

three different weight sets, namely, as follows: 

 

S1 = {v1=1; v2=1; v3=1; u1=1; u2=1; u3=1}, 

S2 = {v1=1; v2=1; v3=9; u1=1; u2=1; u3=9}, 

S3= {v1=1; v2=9; v3=9; u1=1; u2=9; u3=9}. 

 

 

TABLE I: LIST OF 27 CASES IN THE SIMULATION EXPERIMENT 

Case Sample 

Size 

Weight Set 

{v1v2v3} {u1u2u3} 

Combination of DMUs in the 

three Efficiency Classes: 

(A  E  I) 

1 15 {1  1  1} {1  1  1} (0.25  0.25  0.50) 

2 15 {1  1  1} {1  1  1} (0.50  0.00  0.50) 

3 15 {1  1  1} {1  1  1} (0.00  0.50  0.50) 

4 15 {1  1  9} {1  1  9} (0.25  0.25  0.50) 

5 15 {1  1  9} {1  1  9} (0.50  0.00  0.50) 

6 15 {1  1  9} {1  1  9} (0.00  0.50  0.50) 

7 15 {1  9  9} {1  9  9} (0.25  0.25  0.50) 

8 15 {1  9  9} {1  9  9} (0.50  0.00  0.50) 

9 15 {1  9  9} {1  9  9} (0.00  0.50  0.50) 

10 30 {1  1  1} {1  1  1} (0.25  0.25  0.50) 

11 30 {1  1  1} {1  1  1} (0.50  0.00  0.50) 

12 30 {1  1  1} {1  1  1} (0.00  0.50  0.50) 

13 30 {1  1  9} {1  1  9} (0.25  0.25  0.50) 

14 30 {1  1  9} {1  1  9} (0.50  0.00  0.50) 

15 30 {1  1  9} {1  1  9} (0.00  0.50  0.50) 

16 30 {1  9  9} {1  9  9} (0.25  0.25  0.50) 

17 30 {1  9  9} {1  9  9} (0.50  0.00  0.50) 

18 30 {1  9  9} {1  9  9} (0.00  0.50  0.50) 

19 60 {1  1  1} {1  1  1} (0.25  0.25  0.50) 

20 60 {1  1  1} {1  1  1} (0.50  0.00  0.50) 

21 60 {1  1  1} {1  1  1} (0.00  0.50  0.50) 

22 60 {1  1  9} {1  1  9} (0.25  0.25  0.50) 

23 60 {1  1  9} {1  1  9} (0.50  0.00  0.50) 

24 60 {1  1  9} {1  1  9} (0.00  0.50  0.50) 

25 60 {1  9  9} {1  9  9} (0.25  0.25  0.50) 

26 60 {1  9  9} {1  9  9} (0.50  0.00  0.50) 

27 60 {1  9  9} {1  9  9} (0.00  0.50  0.50) 

 

In each of the 27 cases, we generate 500 data sets of input 

and output scores according to the experimental design in 

Table I. For each data set, we obtain the simple efficiency 

score of each DMU through DEA. We define this efficiency 

score as eo for DMUo. Then, for DMUo, we solve the four 

models in turns using eo. We repeat the step for all DMUs. 

We then obtain a weight set for each DMU for each model. 

We use the weight sets obtained from each model to compute 

cross-efficiency scores for all DMUs. Intuitively, if the 

weight set obtained from a model is close to the underlying 
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The three weight sets: S1 represents no dominant input or 

output scenario; S2 represents one dominant input and one 

dominant output scenario; S3 represents one minor input and 

one minor output scenario. 



 

 

 

weight set, then the performance rankings of DMUs obtained 

from the model and the underlying weight set should be 

similar to each other. Consequently, we compute Pearson 

correlation coefficients and also Spearman’s rho coefficients 

between the true efficiency scores and the cross-efficiency 

scores obtained from each model. For comparison purpose, 

we also compute correlations between the true efficiency 

scores and the efficiency scores from DEA, and also the 

efficiency scores from SC-E.  

In our simulated samples, all input scores and output 

scores of all DMUs are generated from a uniform distribution. 

We generate three different classes of DMUs according to 

their productive efficiencies, namely, Advanced-DMU (A), 

Efficient-DMU (E), and Inefficient-DMU (I). For an 

Efficient-DMU, the sum of weighted inputs is equal to the 

sum of weighted outputs. For an Inefficient-DMU, we 

randomly add more inputs to and subtract some amount of 

outputs from an Efficient-DMU. As a result, for an 

Inefficient-DMU, the sum of weighted inputs is more than 

the sum of weighted outputs. Inefficient-DMUs are usually 

weaker DMUs and their performance is very often below the 

industrial average. For an Advanced-DMU, we randomly 

subtract some inputs from and add more outputs to an 

Efficient-DMU. Hence, for an Advanced-DMU, the sum of 

weighted inputs is less than the sum of weighted outputs. In 

some cases of this simulation experiment, we include 

Advanced-DMUs to reflect the situation that sometimes a 

few more pioneering DMUs may always outperform other 

DMUs which have average performance in the industry. In 

some other cases, we only generate Efficient-DMUs and 

Inefficient-DMUs. In those cases, the true efficiency scores 

are more similar to DEA efficiency scores, i.e., efficiency 

scores of efficient and inefficient-DMUs are equal to one and 

less than one, respectively. We use three different sample 

sizes, namely, 15, 30 and 60 in this simulation experiment. 

Using three different sample sizes, three different weight sets, 

and three different mixes of DMU efficiency classes, we can 

obtain 27 cases or scenarios. The layouts of the 27 cases are 

summarized in Table I.  

 

V. RESULTS OF THE SIMULATION EXPERIMENT 

Pearson correlation coefficients and Spearman’s rho 

coefficients are reported in Table II and Table II, 

respectively. 

In Table II and Table III, the correlation coefficients of 

SC-E and the true efficiency are much higher than those of 

DEA and the true efficiency, and the differences are all 

statistically significant. This result has confirmed the value of 

applying cross-efficiency in DEA. When comparing SC-E 

with the other four models, SC-E has correlation coefficients 

less than both BE-I and BE-II in general and also those 

differences are statistically significant in most cases, but 

correlation coefficients of SC-E are all higher than AG-I and 

AG-II. These results may be explained by our previous 

discussions about the characteristics of the four models. 

Since both benevolent models maximize the wellbeing of all 

DMUs, it is expected that they are less likely to choose 

extreme virtual inputs and outputs when compared to the two 

aggressive models. Aggressive models are expected to 

choose extreme virtual inputs and outputs more often in order 

to minimize overall efficiencies of other DMUs. Intuitively, 

extreme virtual inputs and outputs can provide strange results 

in reality since the weights obtained may be unrealistic and 

are difficult to explain in a rational economy. 
 

TABLE II: MEAN PEARSON CORRELATION COEFFICIENTS AND STANDARD 

DEVIATIONSA BETWEEN THE TRUE EFFICIENCY SCORES AND THE 

EFFICIENCY SCORES OF THE SIX METHODS 

 
Mean Pearson Correlation Coefficients: the true efficiency scores 

with efficiency scores of method-i 

C
ase 

DEA SC-E BE-I BE-II AG-I AG-II 

1 
0.4104 

0.1417 

0.8005 

0.1404 

0.8030 

0.1352 

0.8024 

0.1358 

0.6330 

0.2019 

0.6344 

0.2002 

2 
0.5357 

0.1412 

0.8558 

0.1212 

0.8642 

0.1177 

0.8631 

0.1182 

0.6896 

0.1885 

0.6893 

0.1883 

3 
0.4158 

0.1725 

0.8248 

0.1454 

0.84420.

1376 

0.84270.

1404 

0.4521 

0.2528 

0.4547 

0.2515 

4 
0.4822 

0.1699 

0.7726 

0.1420 

0.7865 

b0.1378 

0.7925 

b0.1377 

0.7271 

0.1439 

0.7269 

0.1453 

5 
0.6013 

0.1702 

0.8057 

0.1493 

0.8245 

b0.1394 

0.8280 

b0.1377 

0.7543 

0.1439 

0.7532 

0.1453 

6 
0.4955 

0.2132 

0.8266 

0.1565 

0.8792 

b0.1171 

0.8823 

b0.1179 

0.5968 

0.1972 

0.5968 

0.1995 

7 
0.4410 

0.1470 

0.7638 

0.1451 

0.7844 

b0.1445 

0.7849 

b0.1442 

0.6315 

0.1910 

0.6307 

0.1908 

8 
0.5719 

0.1480 

0.8265 

0.1362 

0.8484 

b0.1223 

0.8502 

b0.1223 

0.6852 

0.1709 

0.6851 

0.1705 

9 
0.4503 

0.2013 

0.7826 

0.1693 

0.8390 

b0.1446 

0.8428 

b0.1412 

0.4815 

0.2339 

0.4820 

0.2331 

10 
0.5411 

0.1042 

0.9009 

0.0692 

0.9025 

0.0623 

0.9019 

0.0623 

0.7834 

0.1029 

0.7826 

0.1026 

11 
0.6576 

0.0992 

0.9356 

0.0525 

0.9357 

0.0521 

0.9358 

0.0522 

0.8295 

0.0957 

0.8297 

0.0955 

12 
0.5656 

0.1174 

0.9267 

0.0680 

0.9431 

b0.0392 

0.9438 

b0.0365 

0.6095 

0.1617 

0.6109 

0.1607 

13 
0.5917 

0.1229 

0.8271 

0.0996 

0.8379 

b0.1018 

0.8416 

b0.1000 

0.7891 

0.1061 

0.7886 

0.1065 

14 
0.6923 

0.1089 

0.8658 

0.0839 

0.8738 

b0.0805 

0.8762 

b0.0802 

0.8254 

0.0926 

0.8240 

0.0930 

15 
0.6569 

0.1451 

0.9330 

0.0603 

0.9457 

b0.0475 

0.9473 

b0.0469 

0.7354 

0.1140 

0.7354 

0.1142 

16 
0.5596 

0.1135 

0.8441 

0.0984 

0.8601 

b0.0960 

0.8604 

b0.0957 

0.7153 

0.1253 

0.7148 

0.1259 

17 
0.6779 

0.1082 

0.8874 

0.0839 

0.8964 

b0.0805 

0.8970 

b0.0802 

0.7686 

0.0926 

0.7678 

0.0930 

18 
0.6237 

0.1257 

0.9128 

0.0645 

0.9309 

b0.0495 

0.9324 

b0.0486 

0.5858 

0.1342 

0.5841 

0.1355 

19 
0.6291 

0.0791 

0.9439 

0.0374 

0.9425 

0.0373 

0.9424 

0.0371 

0.8793 

0.0618 

0.8795 

0.0618 

20 
0.7540 

0.0625 

0.9665 

0.0254 

0.9648 

0.0263 

0.9647 

0.0265 

0.9183 

0.0437 

0.9186 

0.0436 

21 
0.6888 

0.0785 

0.9688 

0.0244 

0.9711b0.

0219 

0.9712 

b0.0216 

0.7824 

0.0852 

0.7835 

0.0843 

22 
0.6678 

0.0867 

0.8576 

0.0765 

0.8614 

b0.0765 

0.8632 

b0.0756 

0.8342 

0.0784 

0.8325 

0.0795 

23 
0.7689 

0.0712 

0.8876 

0.0549 

0.8896 

b0.0562 

0.8909 

b0.0560 

0.8672 

0.0599 

0.8659 

0.0603 

24 
0.7592 

0.0937 

0.9672 

0.0234 

0.9694 

b0.0211 

0.9699 

b0.0208 

0.8444 

0.0611 

0.8439 

0.0617 

25 
0.6509 

0.0801 

0.8886 

0.0576 

0.8958 

b0.0583 

0.8962 

b0.0581 

0.7956 

0.0776 

0.7953 

0.0778 

26 
0.7682 

0.0708 

0.9282 

0.0435 

0.9312 

b0.0433 

0.9314 

b0.0435 

0.8478 

0.0658 

0.8472 

0.0660 

27 
0.7368 

0.0811 

0.9536 

0.0345 

0.9574 

b0.0316 

0.9577 

b0.0315 

0.7192 

0.0894 

0.7183 

0.0890 

aValues at the bottom of each roware standard deviations. 
b Rejected Ho at α= 0.000001 level, where Ho: There is no difference between 

the mean correlation coefficient of simple cross-efficiency (SC-E) scores 

with the true efficiency scores and the mean correlation coefficient of 

efficiency scores of method-i with the true efficiency scores; Ha: The mean 

correlation coefficient of efficiency scores of method-i with the true 

efficiency scores is greater than the mean correlation coefficient of simple 

cross-efficiency (SC-E) scores with the true efficiency scores.  

International Journal of Applied Physics and Mathematics, Vol. 4, No. 4, July 2014

242



 

 

 

TABLE III: MEAN SPEARMAN'S RHO AND STANDARD DEVIATIONSA 

BETWEEN THE TRUE EFFICIENCY SCORES AND THE EFFICIENCY SCORES OF 

THE SIX METHODS 

 Mean Spearman's rho: the true efficiency scores with efficiency 

scores of method-i 

C
ase 

DEA SC-E BE-I BE-II AG-I AG-II 

1 0.4374 

0.1878 

0.7915

0.1439 

0.7908 

0.1359 

0.7900 

0.1382 

0.6160 

0.2005 

0.6166 

0.1988 

2 0.5314 

0.1665 

0.8033 

0.1189 

0.8138 

0.1171 

0.8137 

0.1163 

0.6619 

0.2032 

0.6612 

0.2028 

3 0.4321 

0.1863 

0.8015 

0.1450 

0.82070.

1321 

0.81930.1

341 

0.4569 

0.2515 

0.4587 

0.2505 

4 0.5141 

0.2044 

0.7689 

0.1524 

0.78280.

1501 

0.7889 

b0.1487 

0.7125 

0.1639 

0.7124 

0.1629 

5 0.6091 

0.1838 

0.7785 

0.1498 

0.8001b0.

1335 

0.8048 

b0.1320 

0.7276 

0.1505 

0.7261 

0.1511 

6 0.5340 

0.1785 

0.7914 

0.1479 

0.8361 

b0.1218 

0.8391 

b0.1208 

0.5857 

0.2086 

0.5863 

0.2084 

7 0.4534 

0.1899 

0.7499 

0.1515 

0.7729 

b0.1491 

0.7723 

b0.1490 

0.6153 

0.1950 

0.6151 

0.1942 

8 0.5648 

0.1686 

0.7839 

0.1343 

0.8062 

b0.1183 

0.8077 

b0.1194 

0.6427 

0.1825 

0.6437 

0.1814 

9 0.4763 

0.2013 

0.7588 

0.1689 

0.8106 

b0.1461 

0.8141 

b0.1395 

0.4612 

0.2501 

0.4624 

0.2476 

10 0.5565 

0.1322 

0.8908 

0.0689 

0.8922 

0.0619 

0.8913 

0.0625 

0.7732 

0.1125 

0.7724 

0.1124 

11 0.6388 

0.1149 

0.8924 

0.0588 

0.8913 

0.0571 

0.8914 

0.0565 

0.7986 

0.1030 

0.7989 

0.1027 

12 0.5976 

0.1186 

0.8893 

0.0576 

0.9014 

b0.0302 

0.9020 

b0.0274 

0.6164 

0.1676 

0.6162 

0.1676 

13 0.6148 

0.1229 

0.8323 

0.0996 

0.8450 

b0.1018 

0.8484 

b0.1000 

0.7930 

0.1061 

0.7930 

0.1065 

14 0.6868 

0.1224 

0.8531 

0.0758 

0.8619 

b0.0719 

0.8640 

b0.0715 

0.8098 

0.0870 

0.8084 

0.0876 

15 0.6962 

0.1143 

0.8855 

0.0595 

0.8961 

b0.0462 

0.8975 

b0.0455 

0.7192 

0.1242 

0.7187 

0.1242 

16 0.5673 

0.1344 

0.8376 

0.0976 

0.8555 

b0.0930 

0.8558 

b0.0925 

0.7091 

0.1307 

0.7091 

0.1311 

17 0.6589 

0.1215 

0.8514 

0.0741 

0.8609 

b0.0730 

0.8616 

b0.0728 

0.7396 

0.1084 

0.7386 

0.1088 

18 0.6537 

0.1152 

0.8776 

0.0578 

0.8927 

b0.0409 

0.8937 

b0.0408 

0.5689 

0.1462 

0.5675 

0.1472 

19 0.6306 

0.0936 

0.9344 

0.0373 

0.9330 

0.0383 

0.9330 

0.0382 

0.8700 

0.0650 

0.8703 

0.0645 

20 0.7181 

0.0696 

0.9288 

0.0352 

0.9260 

0.0356 

0.9260 

0.0356 

0.8799 

0.0432 

0.8801 

0.0434 

21 0.7266 

0.0760 

0.9188 

0.0145 

0.9201b 

0.0137 

0.9201b0.

0122 

0.7841 

0.0861 

0.7845 

0.0851 

22 0.6868 

0.0867 

0.8647 

0.0765 

0.8686 

b0.0765 

0.8704 

b0.0756 

0.8393 

0.0784 

0.8378 

0.0795 

23 0.7601 

0.0760 

0.8776 

0.0477 

0.8807 

b0.0490 

0.8819 

b0.0489 

0.8553 

0.0539 

0.8541 

0.0541 

24 0.7996 

0.0682 

0.9147 

0.0199 

0.9161 

b0.0185 

0.9164 

b0.0184 

0.8183 

0.0633 

0.8171 

0.0641 

25 0.6499 

0.0801 

0.8835 

0.0576 

0.8915 

b0.0583 

0.8920 

b0.0581 

0.7931 

0.0776 

0.7928 

0.0778 

26 0.7386 

0.0755 

0.8945 

0.0448 

0.8984 

b0.0445 

0.8987 

b0.0448 

0.8207 

0.0623 

0.8202 

0.0625 

27 0.7640 

0.0735 

0.9098 

0.0249 

0.9123 

b0.0227 

0.9124 

b0.0225 

0.7070 

0.1018 

0.7059 

0.1015 

 

 

 

the performance of the different methods.  

 

VI. CONCLUSION 

This paper examines four models which apply secondary 

objectives to search for better weight sets in DEA. It attempts 

to examine the performance of those models in determining 

weight sets that are more accurate in the performance ranking 

of DMUs. Results of the simulation experiment show that 

BE-I and BE-II are the two best models in measuring 

performance of DMUs. Furthermore, the secondary 

objectives of both BE-I and BE-II do improve the accuracy of 

ranking DMUs in terms of their performance. The results also 

show that both aggressive models perform worse than simple 

cross-efficiency though their performance is better than DEA 

efficiency. These results can be explained by the following 

arguments. Secondary objectives search for better weight sets 

within the alternative optimal region. Some secondary 

objectives which are favor in choosing good weight sets like 

the benevolent models may choose weight sets that are more 

close to the underlying weight set while some secondary 

objectives like aggressive models which objectives are 

exactly opposite to the benevolent models may choose 

weight sets that are quite different from the underlying 

weight set. While simple cross-efficiency chooses weight set 

arbitrarily, hence its performance is in between benevolent 

models and aggressive models. Future research can explore 

more secondary objectives that can improve performance 

measure in DEA.    
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aValues at the bottom of each roware standard deviations.
b Rejected Ho at α= 0.000001 level, where Ho: There is no difference between 

the mean Spearman's rho of simple cross-efficiency (SC-E) scores with the 

true efficiency scores and the mean Spearman's rho of efficiency scores of 

method i with the true efficiency scores; Ha: The mean Spearman's rho of 

efficiency scores of method i with the true efficiency scores is greater than 

the mean correlation coefficient of simple cross-efficiency (SC-E) scores 

with the true efficiency scores. 
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significant effect on the performance of the different methods. 
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