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The Permanental Polynomials of Subdivision Graphs

Wei Li

Abstract—Graph polynomials are important objects of
research in graph theory. Particularly, the permanental
polynomials are widely used in Physics and Chemistry. As the
difficulty to evaluate the permanental polynomials, this paper
deals with the computation of the permanental polynomials of
graphs under various operations. Firstly, we give explicit
expressions for the permanental polynomials of single
subdivision graphs and bisubdivision graphs in recursive ways,
respectively. Then we deduce the permanental polynomials of
degree subdivision graphs by the product of matrices. Based on
these, the permanental polynomials of those physical graphs
and chemical graphs which can be generated by subdivision
operations can be derived.

Index  Terms—Permanent,
subdivision graph.

permanental  polynomial,

. INTRODUCTION

The permanental polynomials of graphs originate from
Mathematics. Recently, they have attracted some interest in
Chemistry, Physics and graph theory. For example, the Jones
polynomial, which has deep connections with statistical
mechanics, can be expressed as the permanent of a matrix [1].
Moreover, the computation of the transition amplitude of a
quantum circuit can also be encoded as computing the
permanent of a matrix [2]. In addition, the constant term of
the permanental polynomial of a chemical graph enumerates
the close-packed dimers (which is termed as perfect
matchings in Mathematics) of a graph, and the coefficients
and zeros of permanental polynomials are related to the

stability and structure information of chemical graphs [3], [4].

Therefore, it is interesting and exciting to evaluate the
permanental polynomials of graphs.

As is well known, computing the permanent of a matrix is
a #P-complete problem [5]. So it is very hard to compute the
permanents and the permanental polynomials directly. Is
there an efficient method to deal with the permanental
polynomials of some interesting and special graphs? Many
graphs widely used in Chemistry and Physics could be
generated by a series of subdivision operations. Motivated by
this, in this paper we provide ways to compute the
permanental polynomials of subdivision graphs. We
introduce some definitions and notations.

A graph G isatriple consisting of a vertex set V , an edge
set E, and a relation that associates with each edge two
vertices called the end-vertices. An edge e with end-vertices
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u and v is denoted by e = (u, v). A cycle is a graph with an
equal number of vertices and edges whose vertices can be
placed around a circle so that two vertices are joined by an
edge if and only if they appear consecutively along the circle.

Let G be a finite and simple graph on n vertices. The
permanental polynomial of G is defined as

7(G, x) = per(xl — A(G)) = Zn:bkx”’k,

where | is the identity matrix of order n, A(G) is the adjacency
matrix of G and the permanent per(A) of a matrix

A= (35 )nxn is given as [6]

per(A) = Z Haia(i)

oeA, i=1l

with A, denoting the set of all the permutations of

{1 2, ..., n}.

In the literatures [7], [8], they proved that the coefficient of
the permanental polynomial satisfies that

(-1’6 =327,

where the sum ranges over all subgraphs H on i vertices
whose components are single edges or cycles, and «(H) is

the number of cycles. Based on this result, Borowiecki and
Jozwiak [9] studied the relationship between the permanental
polynomial of a graph and the permanental polynomials of
its subgraphs, and they obtained the following results.
Theorem 1.1 [9] Let e = (u, v) be an edge of a graph G and

I, (G) the set of cycles containing e. Then

7(G,X) =7(G—¢€,X)+ 7(G—-u—V,X)
+2 30"z -v(c)%,

Cel,(G)

where Cisacyclein T',(G)and |V (C)|denotes the number
of vertices of C.

Theorem 1.2 [9] Let ube a vertex of a graph G and
I, (G) the set of cycles containing u. Then

7(G,X) = x7(G —u,Xx) +Z7r(G —u-—Vv,X)

v~u

+2 3 (0" 26 -v(C)%),

Cel,(G)
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where v~ U means v and uare the end-verices of an edge,
Cisacycle in I,(G)and |V (C)|is the number of vertices

of C.

Theorems 1.1 and 1.2 provide ways to deduce the
permanental polynomials, but it is not convenient to use. On
the purpose to obtain the permanental polynomials easily and
efficiently, we turn to derive the permanental polynomials of
graphs in a linear algebra method. Explicitly, we will deduce
the permanental polynomials of graphs in a recursive way by
the product of matrices.

The organization of this paper is as follows. In Section Il
we give the expressions of the permanental polynomials of a
single subdivision graph and a bisubdivision graph,
respectively. In Section IIl we obtain the permanental
polynomials of degree subdivision graphs by the product of
matrices. These theoretical results provide methods to
compute the permanental polynomial of graphs under
subdivision operations.

Il. THE PERMANENTAL POLYNOMIALS OF GRAPHS BY
SUBDIVIDING AN EDGE OF A GRAPH

A. The Permanental Polynomials of Single Subdivision

Graphs

Let H bethe graph with m edges ¢;,e,,...,e, . Ifagraph
G can be obtained from H by breaking up each e; into
ki +1 segments by inserting k; intermediate vertices
between its two end-vertices, then G is said to be a
subdivision graph of H . For a prescribed edge €; of graph
H,if kj =1, then G is said to be a single subdivision of H
by e;; if k; =2, thenG is said to be a bisubdivision of
H by e;, see Fig. 1.

A subdivision graph of H can be obtained from H by a
series of single subdivisions or bisubdivisions. In the
following, we will deduce the permanental polynomials of
the single subdivision of H and the bisubdivision of H ,
respectively.

s e e e e ——

——— — o e e e e i

u e

u u G v vy

c)

Fig. 1. a) H, b) the single subdivision of H and c) the bisubdivision of H.

Theorem 11.1 Let e = (u, v) be an edge of H and G the
single subdivision of H by inserting one intermediate vertex
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u, between u and v . Denote the edge (U, U;) in G by e, .
Let «(H,e u,v) be the column vector (z(H, X),

z(H-ex),7(H —u,x),7(H —=v,X), 7(H —u —v,x))".
Then

a(G,e,u,u;)=A -a(H,e,u,v),

where A is a 5x5matrix whose i-th row vector is r; for
1<i<5. n=(-1x+1,111) ;
r,=(0,%0,10); r,=(0,0,%0,2) ;r,=(0,10,0,0) ;
r,=(0,0,10,0).

Proof: According to Theorem 1.2,

Explicitly,

7(G,X) =x7(G —uy, X) + 7(G —u; —u,X) + 7(G —u; —V, X)

+2 3" 26 -ve)n

Cerl, (G)
=xz(H—e,x)+7(H —u,x) +7z(H —Vv,x)
~2 3"z H -v(©) 0. )
Cel,(H)

Following Theorem 1.1, it holds that

7(H,X)=7z(H —e,X)+7z(H —u—v,X)
12 3" rH-v(e)0.

Cel,(H)
Combining (1), we obtain that

(G, X)=—7(H,X) + (X+D)z(H —e,X) + z7(H —u, X)
+7(H -=v,X) + 7z(H —u —v,X).

Applying Theorem 1.1, we get that

7(G—-u,X)=x7(G—-u—-u;,X)+7(G-u—-u, —v,X)
=Xz(H —u,X)+z(H —u—-v,x)

and
(G —e,X)=x7(C -6, —u;,X)+7(G—e, —u; —V,X)

=xz(H —e,x)+z(H —v,x).

It is easy to see that
(G —uy, X)=7(H —e,X) and
7(G—-u—u;, X)=7(H —u,x). Thus

a(G,e,u,u)) =A -a(H,e,u,v) follows.

B. The Permanental Polynomials of Bisubdivision Graphs

Theorem 11.2 Let e =(u,Vv) be an edge of H and G the
bisubdivision of H by inserting two intermediate vertices u,
and v, between uand v. Denote the edge (U;,v;) in G by
e,. Let a(H,e,u,v)be the column vector (z(H,X),
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7(H=e,x),7(H —u,x), 7(H —v,X),7(H —u—v,x))".
Then
a(G, e, u,v)=A-a(H, e u,v),

where A, is a 5x5 matrix whose i -th row vector is
¢, for 1<i<5. Explicitty, ¢ =(1 X*, X, X,0) ;

C2 = (01 X21 X1 Xa 1) , 03 = (0, X, 0, 1, 0) 1
c,=(0,x120,0);¢,=(0,10,0,0).
Proof: By Theorem 1.1, it holds that

7(G,X) =7(G —e;,X) + 7(G —u; —V;, X)
2 3" re-ve)nn
CeT,, (G)
=7(G—-e,X)+7(H —ex)
+2 30" xH -v(C) 0.

Cel,(H)
Similarly,

(G —e,X)
=7(G—e, —(u,u),X)+ (G —e —U—Uy, X)
=x7(G —uy,X)+7(G—u; —u,x)
=X[X7(G —u; =V, X) + 7(G —u; —v; —V,X)]
+X7(G—u; —u—v,X)+7(G—-Uu; —u—Vv; —V,X)
=x%z(H —e,x) + xz(H —v,X) + xz(H —u, X)
+7(H —u—-v,x). 2)

In the same way, we can get that

(G —uy, X)=x7(H —e,x) + z(H —Vv, x);

(G —vy, X) =Xz(H —e,x) + 7(H —u, x);

(G —u; —vy,X) =7(H —e,X). (3)
substituting 2 > (1"

Cel,(H)

for z(H,x)—z(H —e,x)—z(H —u—v,Xx) and combining
(3), we obtain that

Z(H-V(C),x) in (2

7(G,X) = 7(H,X) + X*z(H —¢,X)
+X[r(H —u, x) + (H -V, X)].

Thus we derive that (G, e ,u;,v;) = A, -a(H,e,u,v).

Remark 11.3 Based on Theorems Il.1 and 11.2, if G is a
subdivision of H by subdividing some edge e, then the
permanental polynomials of G and its subgraphs can be

derived by the permanental polynomials of H and its
subgraphs in a recursive way.

C. Examples

Fig. 2 (a) is the complete bipartite graph K2,3 and e is
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the edge joining u; and v;. G, is the graph obtained from
K, 3 by inserting two vertices w; and w, between u; and
v, and the edge (w;,w,) is denoted by e, . G, is the graph
obtained from G; by inserting one vertex z; between
w;and w,. Let e, =(w,z;) (see Fig. 2 (b) and Fig. 2 (c) ).
Since

a(Ky3,8,U, ) = (X° +6X° +12x,X° +5x° + 6%, x* +3x%,
x* +4x% +4,x3 +2x), the permanental polynomials of
G, , G, and their subgraphs can be derived as below.

Vi

u,

Fig. 2. () Ky3,(b) Gy, and (c) G,.

TABLE I: THE PERMANENTAL POLYNOMIALS OF G; AND ITS SUBGRAPHS

7(Gp, %) x” +8x° +19x° +16Xx
7(Gy—ep,X) X" +7x% +14x3 + 6x
7(GL— U, X) x® +6x% +10x% + 4
7(Gy—v1,X) x® +6x4 +9x?
7(Gy—up —Vvy,X) x° +5x% + 6x

TABLE Il: THE PERMANENTAL POLYNOMIALS OF G, AND ITS SUBGRAPHS

7(Gy,X) x® +9x5 + 26x* + 25x% — 4x + 4
7(Gz —€3,X) x® +8x8 + 20x* +15x

(G =Wy, X) x” +7x% +15x +10x

7(Gz —71,X) X" +7x% +14x3 + 6x

7(Gy —Wy —2,X) x® +6x* +10x° + 4

I1l. THE PERMANENTAL POLYNOMIALS OF DEGREE
SUBDIVISION GRAPHS

There are various subdivision graphs. In this section we
consider the degree subdivision graph. Let v be a vertex of

degree r in a graph H and (v,u;),(v,u,),...,(v,u,) the r
edges incident with v. The graph obtained by inserting k
intermediate vertices between the end-vertices v and u; of
each edge (V,u;) is said to be a k-degree subdivision graph of

H with respect to v. Fig. 3 illustrates the 1-degree
subdivision graph. The permanental polynomial of the
1-degree subdivision graph will be deduced as follows.
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Fig. 3. The graph and its 1-degree subdivision graph with respect to vertex
V.

Theorem 111.1 Let v be a vertex of degree three in H
and u;, U, and u, the three neighbors of v. The graph G
is the 1-degree subdivision graph of H by inserting the
vertex W; between the end-vertices v and u; of each edge
(v,u;). Let

L(H,v,u;,u,,ug) be the
(#(H,x),7(H —v,

X),7(H —v—uy,x),7(H —v—u,,x),7(H —v—ug, x),7(H
-V —U, —Ug, X),7(H —v—u; —u;,X),7(H —v—u, —u,,X),
z(H —v—u; —u, —Ug,X). Then

column vector

LG, v, W, Wy, W) =Ag - S(H,V,u,u,,Ug),

where A; is a 9x9 matrix whose i -th row vector is s; for
1<i<9. Explicitly, s; = (1, x* +3x% —x,x* +2x-1,x°
+2x =13+ 2x =1, X% +1,x* +1,x% +12); 5, =(0.x°, X%,
X2, %%, x%, %, %, x1); 85 =(0,x%,0,%,%10,0,0); s, = (0,x,
x,0,%,01,0,0); s5 = (0,x?,x,x,0,0,0,1,0); ss =(0,%x,1,0,0,0,
0,0,0); s; =(0,x,0,4,0,0,0,0,0); sg =(0,x,0,0,1,0,0,0,0);
sy =(0,1,0,0,0,0,0,0,0).

Proof: By Theorem 1.2, it follows that

(G, x) =x7(G -V, X) + 7(G—v—w,, X)

+72(G =V —W,,X) + 7(GC —v—W;,X)

2 30" 26 -ve). @

CeI,, (G)

In the same approach, we can obtain that
7(G—-V,X)
=X7(G—-vV—-wW,X)+7(G—Vv—wW, — U, X)
= X[X7(G —V—W, —W,, X)
+7(G—-v—W, —W, —U,,X)]+ 7(G —v—w, —Uy;, X)
= X*[x72(G =V — W, —W, — W, X)
+7(G —V—W, —W, —W; —Ug, X)]
X7 (G —V—W, —W, —Uy,X) +7(G—V—W, —Uy;,X)

=x3z(H =V, %) + X2z(H =V — Uy, X) (5)
+X7(G —v—wW, —W, —U,,X) + 7(G —Vv—wW, —Uy,X).

Moreover,

(G —-v—-wW, —W, —U,,X)
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=x7(G—-Vv—-—wW, —W, —U, —W,,X)
+7(G —v—W, —W, —U, —W; —Ug, X)
=xz(H-v—-u,,X)+7z(H -v—-u, —us,X) (6)

and
(G —-v—-w, —u;,X)
=x7(G-v-w, —U; —W,,X)

+7(G—Vv—wW, —U; —W, —U,,X)
= X[x7(G—-v—-w, —u; —W, —W;,X)
+7(G —v—W, —U; —W, —W; —Uj3,X)]
Hx7z(G—-v—-w, —u; —W, —U, —Ws, X)
—Ws —Ug, X)]
=x%z(H =v—uy,X) + X[z(H —v—u; —Us,X)

+7(H —v—u; —u,,X)]+ 7(H —v—-u; —u, —us,X). (7)

+7(G—-v—wW, —u; —W, —U,

Combining (5), (6), and (7), we derive that
7(G-v,x)=s, - B(H,v,u;,u,,u;). (8)
Based on the result of Theorem 1.2, we can get that
(G —v—w,X)

=x*72(H =V, X) + xz(H =V —U,,X)
+x7(H —v—ug,X) + 7(H —v—u, —ug,X); 9

(G —-v—-WwW,,X)

=x*7z(H =V, X) + xz(H —=v—-uy,X)

+x7(H —v—ug,X) +7(H —v—u; —u3,X); (10)
(G —Vv—w;,X)
=x*72(H =V, X) + x2(H —=v—-uy,X)
+X7(H —=v—U,,X)+7(H —v—u, —U,,X). (11)
Similarly,
(G —v—w, —W;,X)
=X7(H -v,X)+7(H —v—uy,X);
(G —Vv—wW, —Ws,X)
=x7(H -v,x)+7(H —v—-u,,X);
(G -V —w, —W,,X)
=x7(H -v,x)+7z(H —v—ug,X).
Since

z7(H,x)—=xz(H -v,X) —7z(H —v—u,, X)
—(H-v—-u,,X)—7(H —v—us,X)

=2 30" “xH -v(c)x

Cel, (H)

and
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3 0" VaH -v (€)%

CeT, (H)

= S )" %G -v ).

Cel, (G)

Substituting these two equalities into (4) and then
combining (4), (8) - (11), we can deduce that

7(G,x) =5, - B(H,v,u;,u,,us).

that
Thus

It is easy to see
(G —-v—-w, —w, —w;,X) =7(H, X).
LG, v, W, w,,W3) =A; - S(H,V,u;,U,,ug) holds.
Remark 111.2 For a graph H with a vertex v of degree
three, if G is a k-degree subdivision graph of H with
respect to v, then the permanental polynomial of G can be

obtained from the permanental polynomials of H and its
subgraphs recursively, i.e.

BG,v, Wy, Wy, W3) = Ask - B(H,v,ug, Uy, u3).

The result of Theorem I11.1 can be generalized to the case
that v is of degree r (r > 3), but in this case the order of the
iterative matrix is larger.

IV. CONCLUSION

This paper provides methods to compute the permanental
polynomials of subdivision graphs in a recursive way. These
methods come from linear algebra, and they are efficient and
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convenient. Except subdivision graphs, such methods can
also be used to derive the permanental polynomials of graphs
under other graph operations, such as gluing and splicing
operations.
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