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Abstract—Despite the popularity of least-squares regression 

in linear regression analysis, it is well known to be sensitive to 

extreme values.  Many researchers have developed a number of 

alternative estimators. Among the various estimators, least 

absolute deviationsisone of the most popular alternatives. Some 

earlier research works attempted to combine least-squares 

regression and least absolute deviations regression via 

non-linear programming approaches. Instead of using 

non-linear programming approaches, this paper introduces a 

linear programming model combining least-squares regression 

and least absolute deviations regression in linear regression 

analysis. The proposed linear programming model is 

computationally simpler than existing non-linear programming 

approaches suggested in the literature. Another advantage of 

the linear programming models is additional constraints and 

different objective coefficients can be easily added in the 

formulations. Moreover, the proposed linear programming 

model can be employed in combining forecasts. 

 

Index Terms—Least absolute deviations, least squares 

least-squares regression, linear programming. 

 

I. INTRODUCTION 

Least-squares regression (LSR) is sensitive to extreme 

values. In the literature, many alternative estimators have 

been explored and among them least absolute deviations 

(LAD) is one of the most popular alternatives. Since the 

seminal paper by [1] formulated the LAD regression as a 

linear programming (LP) problem, numerous research works 

related to LAD regression have been studied. Among them, 

[2] introduced a quadratic-programming formulation to solve 

the convex combination of least-squares regression and LAD 

regression problems, and [3] proposed an adaptive approach 

in combining least squares and LAD estimators. However, 

both of the aforementioned approaches are formulated as 

non-linear programming problems. Non-linear programming 

problems usually are difficult to solve and can become 

problematical when more constraints are added to the 

problem. 

In this paper, instead of using non-linear programming 

models we introduce a LP model which combines LSR and 

LAD objectives in linear regression analysis. This unified LP 

model can be served as an alternative to linear regression. Its 

regression solution is obtained from combining two of the 

most popular regression methodologies: LSR and LAD. 

Another application of the unified model is to apply it in 

combining forecasts. In the literatures, some studies [4]-[7] 

suggested that combined forecasts will outperform a single 

forecast approach. 

This paper first proposes a LP model which approximates 

 

 

solutions of least-squares regression. The proposed LP model 

can produce very close approximations to the solutions of 

LSR. One of the advantages of using a LP model to solve a 

LSR problem is that additional linear constraints and 

different objective coefficients can be added and solved more 

easily than in traditional LSR problems. Then this paper 

proposes a second LP model, which combines LSR and LAD 

regression. Afterward, this paper proposes a LP model 

minimizes the sum of percentage deviations from the least 

squares value and the least absolute deviation value. 

The remainder of the paper is organized as follows. In the 

next section, we introduce a LP model, which approximates 

LSR solutions. This is followed by a model discussion in 

Section III. In Section IV, we introduce a unified LP model, 

which combines two criteria: minimizing sum of the squared 

deviations and minimizing sum of the absolute deviations in a 

LP formulation. We then propose another LP model which 

minimizes the sum of percentage deviations in Section V. We 

present results of a computational example in Section VI. 

Finally, we provide some conclusions in the last section. 

 

II. A LINEAR PROGRAMING MODEL  
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In linear regression analysis, let Y be the dependent 

variable; X1, X2, …, XJ be J independent variables; and 0, 1, 

2, …, J, be the estimated coefficients. Further, let N be the 

number of observations; and 𝑑𝑖
+and 𝑑𝑖

−, for i = 1, 2, . . . , N, 

be the deviation variables. Then the LAD formulation

(LP-LAD) [1] can be stated as follows: 

𝑀𝑖𝑛   𝑑𝑖
+ + 𝑑𝑖

− 𝑁
𝑖=1                                     (1)

𝑠. 𝑡. 𝑦𝑖 −  𝛽0 +  𝛽𝑗𝑥𝑖𝑗 − 𝑑𝑖
+ + 𝑑𝑖

−𝐽
𝑗=1  = 0, ∀𝑖,        (2)

where 𝑑𝑖
+, 𝑑𝑖

− ≥ 0, ∀𝑖;0 and j are unrestricted in sign, j.

In order to approximate least-squares regression solutions, 

piecewise linear segments are used to represent deviations in 

the LAD formulation. Lam and Moy [8] also used piecewise 

linear segments to approximate squared values in solving 

classification problems in discriminant analysis. Let P be the 

number of piecewise linear segments used for each deviation 

variable, so that deviation variables in LP-LAD become: 

𝑑𝑖
+ −  𝑑𝑖𝑘

+𝑃
𝑘=1 = 0, ∀𝑖,                             (3)

𝑑𝑖𝑘
+ ≤ 1, ∀𝑖, 𝑘 = 1, . . . , 𝑃 − 1,                     (4)

𝑑𝑖
− −  𝑑𝑖𝑘

−𝑃
𝑘=1 = 0, ∀𝑖,                             (5)

𝑑𝑖𝑘
− ≤ 1, ∀𝑖, 𝑘 = 1, . . . , 𝑃 − 1.                       (6)

For deviation variables with absolute values less than one, 

we further split 𝑑𝑖1
+ and 𝑑𝑖1

− as follows:
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𝑑𝑖1
+ −  𝑒𝑖𝑚

+10
𝑚=1 = 0, ∀𝑖,                                 (7) 

 

𝑒𝑖𝑚
+ ≤ 0.1, ∀(𝑖,𝑚),                                        (8) 

 

𝑑𝑖1
− −  𝑒𝑖𝑚

−10
𝑚=1 = 0, ∀𝑖,                                    (9) 

 

𝑒𝑖𝑚
− ≤ 0.1, ∀ 𝑖,𝑚 .                                        (10) 

 

Substituting (7), (8), (9) and (10) into (3), (4), (5) and (6), 

we obtain:  

 

𝑑𝑖
+ −  𝑒𝑖𝑚

+10
𝑚=1 − 𝑑𝑖𝑘

+𝑃
𝑘=2 = 0, ∀𝑖,                  (11) 

 

𝑒𝑖𝑚
+ ≤ 0.1, ∀(𝑖,𝑚),                                       (12) 

 

𝑑𝑖𝑘
+ ≤ 1, ∀𝑖, 𝑘 = 2, . . . , 𝑃 − 1,                             (13) 

 

𝑑𝑖
− −  𝑒𝑖𝑚

−10
𝑚=1 − 𝑑𝑖𝑘

−𝑃
𝑘=2 = 0, ∀𝑖,                        (14) 

 

𝑒𝑖𝑚
− ≤ 0.1, ∀(𝑖,𝑚),                                      (15) 

 

𝑑𝑖𝑘
− ≤ 1, ∀𝑖, 𝑘 = 2, . . . , 𝑃 − 1,                           (16) 

 

Using the piecewise deviation variables, our proposed LP 

formulation (LP-LSR) can be formulated as follows: 

 

Min     0.2𝑚 − 0.1 

10

𝑚=1

𝑁

𝑖=1

 𝑒𝑖𝑚
+ + 𝑒𝑖𝑚

−   + 

   2𝑘 − 1 𝑃
𝑘=2

𝑁
𝑖=1  𝑑𝑖𝑘

+ + 𝑑𝑖𝑘
−                          (17) 

 

s. t.  𝑦𝑖 −  𝛽0 + 𝛽𝑗𝑥𝑖𝑗 −  𝑒𝑖𝑚
+

10

𝑚=1

𝐽

𝑗=1

 + 

 𝑒𝑖𝑚
−10

𝑚=1
 −  𝑑𝑖𝑘

+𝑃
𝑘=2 +  𝑑𝑖𝑘

−𝑃
𝑘=2  = 0, ∀𝑖,             (18) 

 

𝑒𝑖𝑚
+ ≤ 0.1, ∀(𝑖,𝑚),                                    (19)  

 

𝑑𝑖𝑘
+ ≤ 1, ∀𝑖, 𝑘 = 2, . . . , 𝑃 − 1,                                 (20) 

  

𝑒𝑖𝑚
− ≤ 0.1, ∀ 𝑖,𝑚 ,                                    (21) 

 

𝑑𝑖𝑘
− ≤ 1, ∀𝑖, 𝑘 = 2, . . . , 𝑃 − 1,                           (22) 

 

where 𝑒𝑖𝑚
+ ,  𝑒𝑖𝑚

− , 𝑑𝑖𝑘
+ , 𝑑𝑖𝑘

−  ≥ 0, ∀𝑖; 0 and j are unrestricted 

in sign, j. 

Notice that each 𝑑𝑖1
+  or 𝑑𝑖1

−  are further divided into 10 

segments. Each of the 10 segments, 𝑒𝑖𝑚
+  or 𝑒𝑖𝑚

− , for m = 1, 

2, …, 10, has a value less than or equal to 0.1. These 

segments are used to approximate the squared values of those 

deviations that have absolute values less than one. 

Furthermore, when k=P, the deviation variables, 𝑑𝑖𝑘
+  and 𝑑𝑖𝑘

− , 
are not included in constraints (21) and (22), as a result, they 

are unrestricted in magnitude. The next section discusses how 

the objective function (17) approximates sum of squared 

deviations in LP-LSR.  

 

III. MODEL DISCUSSION 

Objective coefficients of deviation variables in LP-LSR 

from P=1 to P=11, are listed in Table I. In Table I, the 

objective coefficients increase monotonically with values of 

m and k, and since objective function (17) aims to minimize 

sum of the weighted deviations, deviation variables with 

smaller objective coefficients will be used as deviations in the 

LP-LSR solution before those with larger objective 

coefficients.  

We now demonstrate how objective function (17) 

approximates the squares values of deviations, which we 

illustrate using the following equation:   

 

(𝑎 − 𝑏)2 = 𝑎2 + 𝑏2 − 2𝑎𝑏, 𝑎 ∈ 𝑅, 𝑏 ∈ 𝑅.               (23) 

 

Let 𝑎 ∈ 𝑅; then according to (23), (𝑎 − 1)2 = 𝑎2 + 12 −
2𝑎, or  

 

𝑎2 = (𝑎 − 1)2 +  2𝑎 − 1 .                          (24) 

 

For example, in equation (24), if a = 9, then 92= (9 – 1)2 + 

(2(9)-1) = 64 + 17 = 81; if a = 13.6, then 13.62 = (13.6 – 1)2 + 

(2(13.6) -1) = 158.76 + 26.2 = 184.96; if a = –17 , then (–17)2 

= ((–17) –1)2+(2(–17) – 1) = (–18)2 + (–35) = 289. 

Furthermore, if we let q {integer1}, then from (24), q2 = 

(q-1)2 + (2q-1). Similarly, (q-1)2= (q-2)2 + (2(q-1)-1). 

Substituting the above equation for (q-1)2 into the previous 

equation,then q2= (q-2)2 + (2(q-1)-1) + (2q-1).  Similarly, 

since (q-2)2= (q-3)2 + (2(q-2)-1), substituting the above 

equation for (q-2)2 into the previous equation, then q2= (q-3)2 

+ (2(q-2)-1) + (2(q-1)-1) + (2q-1). After substituting 

consecutively for q number of times, then q2 = (q-(q))2+ 

(2(q-(q-1))-1)+…+ (2(q-2)-1) + (2(q-1)-1) + (2q-1), or q2 = 

(2(q-(q-1))-1)+…+ (2(q-2)-1) + (2(q-1)-1) + (2q-1), since 

(q-q)2=0. Consequently, we obtain the following: 
 

TABLE I: OBJECTIVE COEFFICIENTS OF DEVIATION VARIABLES  

𝑒𝑖𝑚
+ ,  𝑒𝑖𝑚

−  Objective 

coefficient 
𝑑𝑖𝑘

+ ,  𝑑𝑖𝑘
−  Objective 

coefficient 

m = 1 0.1 k = 2 3 

m = 2 0.3 k = 3 5 

m = 3 0.5 k = 4 7 

m = 4 0.7 k = 5 9 

m = 5 0.9 k = 6 11 

m = 6 1.1 k = 7 13 

m = 7 1.3 k = 8 15 

m = 8 1.5 k = 9 17 

m = 9 1.7 k = 10 19 

m = 10 1.9 k = 11 21 

 

𝑞2 =  2 𝑞 −  𝑞 − 1  − 1 +. . . + 2 𝑞 − 2 − 1 + 

 2 𝑞 − 1 − 1 +  2 𝑞 − 0 − 1 .                   (25) 

 

For example, if q = 6, then 6 2 = (2(6-5)-1) + (2(6-4)-1) + 

(2(6-3)-1) + (2(6-2)-1) + (2(6-1)-1) + (2(6-0)-1) = 1 + 3 + 5 + 

7 + 9 + 11 = 36. We use equation (25) to approximate square 

values in (17).  

Let us consider cases when deviations in LP-LSR are 

greater than one. Observe that if the magnitude of an 

absolutedeviation is greater than or equal to unity, then, 

 𝑒𝑖𝑚
+10

𝑚=1 = 1,  and sum of the objective values of these 10 

deviational variables is equal to (0.1 + 0.3 + 0.5 + 0.7 + 0.9 + 

1.1 + 1.3 + 1.5 + 1.7 + 1.9) × (0.1) = 1. This is why the 

summation term of k starts at 2 in (17). Consider the case 

when a deviation is equal to 7, then the objective value will 

be (1 + 3 + 5 + 7 + 9 + 11 + 13) × (1) = 49, which is square 
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value of 7.  

Let us consider cases when absolute deviations in LP-LSR 

are less than one. Consider a deviation equals 0.3, then 

according to constraints (17) to (20) in LP-LSR 𝑒𝑖1
+ = 𝑒𝑖2

+ =
𝑒𝑖3

+ = 0.1. Since these three deviation variables have smaller 

objective coefficients than the other deviation variables in 

LP-LSR, they will be used as deviations in LP-LSR solutions 

prior to those with larger objective coefficients. Then the 

objective value will be equal to 0.1𝑒𝑖1
+ + 0.3𝑒𝑖2

+ + 0.5𝑒𝑖3
+ =

0.1 0.1 + 0.3 0.1 + 0.5 0.1 = 0.09, which is the square 

value of 0.3. If the deviation is equal to 0.8, then the objective 

value equals (0.1 + 0.3 + 0.5 + 0.7 + 0.9 + 1.1 + 1.3 + 1.5) ×

(0.1) = 0.64, which is square value of 0.8. Consider the case 

when the deviation is 0.59, then, the objective value equals 

(0.1+ 0.3 + 0.5 + 0.7 + 0.9) ×(0.1) + (1.1) × (0.09) = 0.3490, 

which is very close to 0.592 = 0.3481. Negative 

deviations(𝑒𝑖𝑚
− ) work similar to positive deviations (𝑒𝑖𝑚

+ ). 

If the deviation is a non-integer, then the approximation 

will not be exact, but will, however, remain very close to the 

square value. For instance, if the deviation is equal to 13.2, 

then the objective value will be (1+ 3+ 5 + … + 25) × (1) + 

(27) × (0.2) = 174.4, whichis close to 13.22=174.24. Negative 

deviations (𝑑𝑖𝑘
− ) work similar to positive deviations (𝑑𝑖𝑘

+ ).  
 

TABLE II: VALUES OF OBJECTIVE FUNCTION IN LP-LSR (P=9) 

Absolute 

deviations 

(𝑑𝑖
+ 𝑜𝑟  𝑑𝑖

−) 

Value of objective function (17) Square term of   

(𝑑𝑖
+ 𝑜𝑟  𝑑𝑖

−) 

0.1 (0.1)(1)(0.1) = 0.01 0.01 

0.2 0.01 + (0.1)(3)(0.1) = 0.04 0.04 

0.3 0.04 + (0.1)(5)(0.1) = 0.09 0.09 

0.4 0.09 + (0.1)(7)(0.1) = 0.16 0.16 

0.5 0.16 + (0.1)(9)(0.1) = 0.25 0.25 

0.6 0.25 + (0.1)(11)(0.1) = 0.36 0.36 

0.7 0.36 + (0.1)(13)(0.1) = 0.49 0.49 

0.8 0.49 + (0.1)(15)(0.1) = 0.64 0.64 

0.9 0.64 + (0.1)(17)(0.1) = 0.81 0.81 

1.0 0.81 + (0.1)(19)(0.1) = 1.00 1.00 

2 1 + (3) = 4 4 

3 4 + (5) = 9 9 

4 9 + (7) = 16 16 

5 16 + (9) = 25 25 

6 25 + (11) = 36  36 

7 36 + (13) = 49 49 

8 49 + (15) = 64 64 

9 64 + (17) = 81 81 

 

Table II provides a summary of the values of the objective 

function of LP-LSR in relation to the absolute deviations. It 

can be observed from Table II that, (17) closely 

approximatesthe squares values of the absolute deviations in 

LP-LSR.  

Since LP-LSR is a LP model, additional constraints and 

different objective coefficients can be added more easily into 

the model than that of the least-squares regression model. For 

example, in the next section, we introduce a LP model that 

combines LSR and LAD objectives in a single LP 

formulation.  

 

IV. A UNIFIED LINEAR PROGRAMMING FORMULATION 

Arthanari and Dodge [2] introduced a 

quadraticprogramming formulation to solve the problem on 

convex combination of LSR and LAD regression. We also 

apply a convex combination of LSR and LAD regression in 

our next proposed formulation. However, a significant 

difference in our work is that we formulate the problem as a 

LP problem instead of a quadratic-programming problem. 

Let 0 ≤ 𝛿 ≤ 1, whereδis used to maintain the degree of 

minimizing absolute deviations and squared deviations in the 

objective function. Then our proposed model (LP-δ) can be 

stated as follows: 

 

𝑀𝑖𝑛     1 − 𝛿  0.2𝑚 − 0.1 + 𝛿 10
𝑚=1

𝑁
𝑖=1  𝑒𝑖𝑚

+ +

𝑒𝑖𝑚−+𝑖=1𝑁𝑘=2𝑃(1−𝛿2𝑘−1+𝛿)𝑑𝑖𝑘++𝑑𝑖𝑘−       (26) 

 

s. t.  18 ,  19 ,  20 ,  21 ,  22 ,  
 

where 𝑒𝑖𝑚
+ ,  𝑒𝑖𝑚

− , 𝑑𝑖𝑘
+ , 𝑑𝑖𝑘

−  ≥ 0, ∀𝑖; 0 and j are unrestricted 

in sign, j. 

When  = 0, LP-  becomes LP-LSR, which approximates 

least-squares regression solutions. When  = 1, then LP-  

becomes the LAD minimization problem. Applying different 

values of  to LP-, a spectrum of solutions to the linear 

regression model reflecting different degrees of minimizing 

least squares and least absolute deviations can be generated.  

 

V. MINIMIZING PERCENTAGE DEVIATIONS 

LP-  requires one to provide a   value prior to solving the 

problem. While it allows flexibility for decision makers to 

put different weights on minimizing least-squares regression 

and LAD regression, however, sometimes it may be difficult 

to determine the ‗best‘   value. Consequently, in this section 

we introduce a LP model which does not require one to 

provide a priori   value. The objective function of the LP 

model is to minimize the sum of percentage deviations from 

the least squares value (LS) and the least absolute deviation 

value (LAD). We call this LP model Minimum Sum of 

Percentage Deviations, or LP-MSPD. Prior to solving 

LP-MSPD, the sum of squares error, SSE(LP-LSR) is 

obtained from solving LP-LSR and the sum of absolute error, 

SAE(LP-LAD) is obtained from solving LP-LAD. Then, 

LP-MSPD can be stated as follows: 

 

Min   

 

 
 
 
 0.2𝑚 − 0.1 

𝑆𝑆𝐸 𝐿𝑃 − 𝐿𝑆𝑅 
 +

 
1

𝑆𝐴𝐸 𝐿𝑃 − 𝐿𝐴𝐷 
 
 

 
 

10

𝑚=1

𝑁

𝑖=1

 
𝑒𝑖𝑚

+ +
𝑒𝑖𝑚
−  + 

   
 

 2𝑘−1 

𝑆𝑆𝐸 𝐿𝑃−𝐿𝑆𝑅 
 +

 
1

𝑆𝐴𝐸(𝐿𝑃−𝐿𝐴𝐷)
 
 𝑃

𝑘=2
𝑁
𝑖=1  𝑑𝑖𝑘

+ + 𝑑𝑖𝑘
−            (27) 

 

s. t.  18 ,  19 ,  20 ,  21 ,  22 ,  
 

where 𝑒𝑖𝑚
+ ,  𝑒𝑖𝑚

− , 𝑑𝑖𝑘
+ , 𝑑𝑖𝑘

−  ≥ 0, ∀𝑖; 0 and j are unrestricted 

in sign, j. 

The objective function (27) can be viewed as minimizing 

the sum of two ratios. The first ratio, 
   0.2𝑚−0.1 10

𝑚=1
𝑁
𝑖=1  𝑒𝑖𝑚

+ +𝑒𝑖𝑚
−  +   2𝑘−1 𝑃

𝑘=2
𝑁
𝑖=1  𝑑𝑖𝑘

+ +𝑑𝑖𝑘
−  

𝑆𝑆𝐸(𝐿𝑃−𝐿𝑆𝑅)
, actually 

is 
𝑆𝑆𝐸(𝐿𝑃−𝑀𝑆𝑃𝐷)

𝑆𝑆𝐸(𝐿𝑃−𝐿𝑆𝑅)
. The second ratio, 

   𝑒𝑖𝑚
+ +𝑒𝑖𝑚

−  10
𝑚=1

𝑁
𝑖=1 +   𝑑𝑖𝑘

+ +𝑑𝑖𝑘
−  𝑃

𝑘=2
𝑁
𝑖=1

𝑆𝐴𝐸(𝐿𝑃−𝐿𝐴𝐷)
,  actually is 
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𝑆𝐴𝐸(𝐿𝑃−𝑀𝑆𝑃𝐷)

𝑆𝐴𝐸(𝐿𝑃−𝐿𝐴𝐷)
.  Each ratio has a lower bound equal to one. 

When one ratio is greater than one, it implies that the solution 

deviates from the minimum value, and the ratio represents the 

deviation percentage. For example, since the percentage 

deviation from SSE(LP-LSR) is equal 

to
𝑆𝑆𝐸 𝐿𝑃−𝑀𝑆𝑃𝐷 −𝑆𝑆𝐸(𝐿𝑃−𝐿𝑆𝑅)

𝑆𝑆𝐸(𝐿𝑃−𝐿𝑆𝑅)
=

𝑆𝑆𝐸(𝐿𝑃−𝑀𝑆𝑃𝐷)

𝑆𝑆𝐸(𝐿𝑃−𝐿𝑆𝑅)
−

1, consequently 
𝑆𝑆𝐸(𝐿𝑃−𝑀𝑆𝑃𝐷)

𝑆𝑆𝐸(𝐿𝑃−𝐿𝑆𝑅)
 measures the percentage 

deviation from SSE(LP-LSR). 

 

VI. A COMPUTATIONAL EXAMPLE 

The first data set, containing values of expenditure on 

education, is from [9]. The data set contains values 

representing expenditure on education (Y), personal income 

(X1), youth percentage (X2) and urban percentage (X3) in 50 

states of the United States of America. In the linear regression 

model, the expenditure on education is the dependent 

variable while the other three variables are independent 

variables, Y = 0 + 1X1 + 2X2 + 3X3 + e, where e is error 

term. We run least-squares regression,  
 

TABLE III: REGRESSION COEFFICIENTS BY DIFFERENT METHODS 

Regression coefficients 

 Least-Squares 

Regression 

LP-LSR LP-MSPD LP-LAD 

0 -556.8200 -556.2367 -433.1811 -358.0441 

1 0.07228 0.07226 0.062998 0.06474 

2 15.52700 15.51776 12.484118 9.65902 

3 -0.03499 -0.03697 0.231198 0.28535 

     

SSE 75351.4 75351.5 77842.8 84567.9 

SAE 1586.83 1586.92 1547.16 1528.21 

 

TABLE IV: SSE AND SAE OBTAINED FROM LP- 

 0 0.9 0.99 0.995 0.998 1 

SSE 75351 75411 77639 79692 80956 84568 

SAE 1587 1577 1548 1538 1535 1528 

 

LP-LSR, LP-LAD, and LP-MSPD using the dataset, and 

the resulting SSE and SAE are reported in Table III. We then 

solve LP-  for various values of , and the corresponding 

values of SSE and SAE are reported in Table IV. 

According to the computational results obtained above, we 

observe that the model LP-LSR is quite accurate in 

approximating solutions obtained from least-squares 

regression. Their SSE measures are almost identical. We can 

conclude that LP-LSR can produce very close 

approximations to least-squares regression solutions. 

Applying different values of  to LP-, one can generate a 

spectrum of solutions to the linear regression model 

reflecting trade-offs between LSR and LAD in linear 

regression analysis. Among this spectrum of solutions, 

LP-MSPD can determine a solution which minimizes the 

sum of the percentage deviations from the minimum 

least-squares regression and LAD regression solutions.  

 

VII. CONCLUSION 

This paper introduces three LP models. The first model, 

LP-LSR, utilizes piecewise LP to approximate square errors 

in least-squares regression. The results of a computational 

example confirm that LP-LSR can produce good 

approximations to least squares solutions. Furthermore, 

LP-LSR can add additional constraints and use different 

objective coefficients in the formulation. This is an advantage 

over the traditional least-squares regression method. For 

example, in the second LP model, LP-, which combines 

LSR and LAD objectives in linear regression analysis, is a 

modified formulation of LP-LSR. Its objective function is to 

minimize the convex combination of LSR and LAD in linear 

regression. If the  weight equals one, the LP formulation 

will yield a LAD solution; however, if the  weight equals 

zero, it will yield a LSR solution to an approximation. 

Applying different values of  where 0≤  ≤1, to LP-, one 

can generate a spectrum of solutions to the linear regression 

model reflecting different degrees of least squares and least 

absolute deviations characteristics. Furthermore, the third LP 

model, LP-MSPD determines a solution which minimizes the 

percentage deviations from the solutions of LSR and LAD 

regressions. An advantage of LP-MSPD is it does not require 

any input of subjective weights. Both LP- and LP-MSPD 

can be used as alternative approaches to least-squares 

regression. In future research works, it may be interesting to 

examine regression solutions obtained from combining the 

two most popular regression methodologies namely LSR and 

LAD regression. In addition, the proposed unified LP models 

can be employed in combining forecasts. Other objectives 

like minimize maximum deviation can be added to the 

combining forecasts models.  
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