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On the Tura Numbers for Even Cycles

Rui Zhang, Yonggi Sun, and Yali Wu

Abstract—For integers k=2 and n>2k+1, let ex (n, Cy)
denote the maximum number of edges in a Cy-free graph of
order n, and EX (n, Cy) denote the set of all graphs with ex(n,
Cy) edges. For k=3, it is well known that ex (n, Cy) >
0.5338n*"Y% for some large n. In this paper, we study the values
of ex (n, Cy) for k>3 when n is small, their lower bounds were
given based the three graphs without C,. The known result
shows that it is the tight lower bound for k=3 and n=28, and we
further conjecture that ex(n, Cu)=(2k+1)(2k—1)(2k—2)/2 for
n=4k’-2k—2 and k>4.

Index Terms—Extremal graph, even cycle, lower bounds,
Tur& numbers.

I. INTRODUCTION

We consider only finite undirected graphs without loops or
multiple edges. V(G) and E(G) denote the vertex set and edge
set of graph G respectively. Py is a path on k vertices and C; is
a cycle of length i. The length of the shortest cycle in G is
referred to as the girth of G, denoted by g(G). A block of a
graph is maximal nonseparable subgraph. Let EC(S) denote
the edge set of the complete graph with vertex set S.

For integers k>2 and n>2k+1, let ex(n, Cy) denote the
maximum number of edges in a Cy-free graph of order n, and
EX(n, Cy) denote the set of all graphs with ex(n, C,) edges.
There is a conjecture of Erd& and Simonovits [1] that ex(n,
CyJ) is asymptotically to (1/2)n**¥* as n tends to infinity.
Bollob& [2] proved that ex(n, Cy)~(1/2)n"*"* for k=2.
Lazebnik, Ustimenko and Woldar [3] studied certain families
of Cy-free graphs, and proved that ex(n, Cu)>((k—1)
k" ™10(1))n"*Y* for k=3 and 5. In paper [4], they further
improved the lower bounds on ex(n, Cy/) to (0.5 + o(1)) n****
for k=3. Firedi, Naor and Verstra&e [5] proved that ex(n,
C2)>0.5338n"%, where n=t*+t+t+1+ (/6 —2)(t+t+t+1) |
and t=2%*** for a being a positive integer. Hence, the smallest
n for them is 723. Yang and Rowlinson found the values of
ex(n, C,) for 21<n<31 [6] and the values of ex(n, C,) for 6
<n<21 [7] by a computer. They also determined the
corresponding extremal graphs. Sun [8] et al. expanded the
results for ex(n, Cg) to n<26.

In this paper, the lower bounds on ex(n, Cy) for k>3 are
studied when n is small. We first construct some Cy-free
graphs of order ny=ny(k) to obtain the lower bounds on ex(no,
Cy). Then, the lower bounds on ex(n, Cy) for n< ngy are
obtained from them by deleting some vertices. The known
results in [9] show that lower bounds of ex(n, C,) we
obtained when n=4k’-2k-2 are tight. For the sake of
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convenience, let o denote the size of Ky, in the following
sections, namely

o (2k-D(k-2)
2

1. CONSTRUCTION AND PROOFS

According to the value of k, we divide n into three parts,
n<4k?-2k—2, 4k?*—2k—2<n<2k’-3k—1 and n>2k’>-3k-1. Then
the lower bounds on ex(n, C,) are obtained respectively.

1) n<4k2-2k-2

We will construct a Cy-free graph F, of order n=4k?—2k-2
as follows. Firstly, we construct a cycle of length 2(2k+1),
and label the vertices of the cycle by vy, uj, v, Uy,..., Vorer,
Ux+1 Sequentially. Secondly, we divide the cycle into 2k+1
copies of Py (viu;visy for 1<i<2k and voe.+1Ux41V1), and expand
each P3 to a Ky, by adding 2k—4 vertices, where X 1, Xiz,. ..,
Xi2k—4 are added to vijuyvi.g for 1<i<2k and Xoxe11, Xoke1,25-- -
Xok+1.2k-4 10 VoregUpegVy. NOwW the 2k+1 copies of Ky, are
connected end to end. Let E; =U % EC{Vi, Ui, Vis1, Xi1, Xi2:- - -,
Xizka}) UECH{Va1, Uaksr, Vi, Xoke11, Xok#12---5 Xoke12k-4))s
then |Ey| = (2k + 1)o. Hence we have

V(FD)={vi, Us: 1<i <2k +13 U 1<i<2k +1, 1< j<2k — 4],
E(F1)=E1.

Note that we construct F, from a cycle of length 2(2k+1),
and expand each P3 to a Ky;. Furthermore, F; are consisting
of 2k+1 blocks of order 2k—1. So F; contains no C,. Hence
we have

EX(n, CZk)>(2k + 1)0',

where n=4k?-2k-2. Taking k=5 as an example, the graph F;
of order 88 is shown in Fig. 1. Hence we have ex(88, Cyp)
>396.

Ky

Fig. 1. A Cyo-free graph of order 88.

Let ny denote the order of F. If n#ng, we can construct the
Cx-free graphs of order n from F; by deleting vertices as
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follows. Let An=ny—n, the graph obtained from F, by deleting
An vertices is denoted by Hap.

For An<2k—4, Ha, is obtained from F; by removing xy ; for
1<j<An. For An=2k-3, H,, is obtained from Hy.4 by

removing uy. Let o= (An—(2k—3))/(2k—2) | and f=(An—(2k-3))

mod (2k—2). For An>2k-3, there are three cases according to
the value of g. If =0, H,, is obtained from Hy_; by removing
Xij, Ui and v; for 2<i<a+1 and 1<j<2k—4. If 1<h<2k—4, Ha, is
obtained from Hi 2)esox-3 DY removing X,.p; for 1<j<p. If
p=2k=3, Ha, is obtained from H i 2)o+2x-3+2¢-4 Dy removing
Ug+2:

Since the graphs H,, are obtained from F; by deleting An
vertices, Hy, contains no C, for An>n,. Hence we have the
following lemma.

Lemma 1. For n<n, = 4k?— 2k—2, we have

ex(n;C,.) > (2k +1)c—[w+ p(o-—l)+q(ao-+1)]

€]

where a=(An—(2k-3))/(2k-2) and An=n¢—n. If An<2k—3, then
p=g=0, and p=An. If 2k—3<An<4k-6, then p=1, g=0 and
p=An—(2k=3). If An>4k—6, p=g=1 and p=(An—(2k—-3)) mod
(2k-2).

Especially for 2k’-3<n<4k’-2k—2, we can use another
method to construct Cy-free graphs of order n from F; as
follows. Let o= An/(2k — 2)] and f=An mod (2k—2). There
are three cases according to the value of 8. If =0, H,, is
obtained from F; by removing x;;, v; and u;, adding the edges
Vo1Xoke1sj » Var1Voke1, VariUoken for 1<i<a and 1<j<2k—4. Since
Han contains no Cy, we need to delete the edges Voys1Vok,
VorVak-1;. . -y Vok-aroVok—a+1 from it. If 1<B<2k—4, H,, is obtained
from H i 2), by removing X,.1 for 1<j<p. If f = 2k=3, Han is
obtained from Hz 2),+2¢-4 by removing u,.;. Since the graphs
Han are obtained from F; by deleting An vertices, we have
Han contains no C,. Hence we have the following lemma.

Lemma 2. For 2k’-3<n <n, = 4k’~ 2k—2, we have

ex(m;C,,) = (2k+1)o — {w +(o +1)a} ,(2)

where a=L An/(2k — 2)J, p=An mod (2k-2) and An=n,—n. By
Lemma 1 and Lemma 2, we have the lower bounds on ex(n,
Ca) for 2k>~3<n< n, = 4k*— 2k-2 as following.
Lemma 3. For 2k’-3<n <n, = 4k’— 2k—2, we have
ex(n, Cx)>(2k+1)o—[min{Qy, Q2,}], 3)
where the values of Q; and 2, are equal to the ones enclosed
in square bracket of the inequalities (1) and (2) respectively.
2) 4k*—2k—2<n<2k’-3k -1
A Cy-free graph F, of order n=2k*-3k—1 is constructed as
follows. Firstly, we construct a cycle of length 2(2k+2), and
label the vertices of the cycle by vy, Uy, Vo, Us,..., Vasz, Unke2
sequentially. Secondly, we divide the cycle into 2k + 2 copies
of P3 (ViUvisy for 1<i<2k+1 and Vo.oUak42V1), and expand each
P3 to a Ky1 by adding 2k—4 vertices, where Xi 1, Xi2,. .., Xi 2-4
are added to vjuiyy for 1<i <2k+1 and Xoxsz1, Xoks2.2s---»
Xoks2.2k-4 10 VoraolUoksaVy. NOW the 2k+2 copies of Ky are
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connected end to end. Let E;=U 2" EC({Vi, Ui, Vis1, Xi 1, Xi 2.
Xiok-a}) U EC({Vaks2, Uza, Vi, Xoks21s Xoks2.2---5 X2k+2,2k—4}),
then |Ej|=(2k +2)o. Thirdly, we connect u; and Uiy for
1<i<k+1, and divide them into k=1 parts by vertices y;i,
Yi2, « « -+ Yik- The Pz (Ui, Vi1, Viz) IS expanded to a
Kak-1—€(Uiyi2 € E(F,)) by adding vertices zi1 1, Zi 12, ., Zi.1,2k-4,
where 1<i<k +1. Each of the remaining k—3 parts is expanded
to K1 by adding 2k—3 vertices as follows. The vertices z;j 1,
Zijox 3 are added to y;;yij« for 2<j<k-3, and zjx 1,
Zik-225-+-» Zik-2.2k-3 10 Yik-oUirks1, Where 1<i<k+1. Let E= UJI:ZB
ECH{Yij Vij+tr Zijar Zij2---» Zijok-ay) Y (ECHUi, Vi Vi Ziga,
Zig25e s Zi,1,2k—4})\{_uiyi,2}) U EC({Uinkr1s Yik-2s Zik-2.11 Zik-225- -+
Zik-22¢-3}), then |E3| = (k—2)o—1. Hence we have

Zi,j,2,~ cey

V (F2) ={v;, ui:1<i <2k+2} U
{xij1<i<2k+2, 1< j<2k—4} U
{yijplsi<k+l,1<j<k-2}U

{zypl<i<k+1,1<j<k-2,1<1<2k— 4 (for
j=1) or 1<I< 2k — 3 (for 1<j< k — 2)},

E(F,)=UE, UE,.

Then [E(F,)|=((k — 2)o — D)x(k + 1)+(2k+2)c = (k+1)(ko
—1). Note that F, is constructed from a graph G with girth
g(G)> 2k+1. Furthermore, F, consists of k(k + 1) blocks of
order 2k—1. So F, contains no C,,. Hence we have
ex(n, Cy) >(k + 1)(ko — 1),
where n=2k?-3k—1. Taking k=5 as an example, the graph F,
of order 234 is shown in Fig. 2. Hence we have ex(234, Cyo) >
1074.

Kg—()
i,1,2 ,—i\\ 2§22 -~ ‘\\ 2i,3,2_ /
Z,11f Zi, 1\Qg;,,2,1 ZLQ\%%gl ZL37
Yi1 Yi2 Yi,3 yz,4

Fig. 2. The graph F; of order 234.

Let ny denote the order of the graph F,. If n=ny, we can
construct the C,-free graphs of order n by deleting vertices
from F, as follows. Let An=ny—n, the graph obtained from F,
by deleting some vertices is denoted by Ha,. Let m=2k*~6k+3
be the number of the vertices on each chord ujui..1 except u;
and Uy for 1<i<k+1. And let y=| An/m]and 6= An—ym. H,y,
is obtained from F, by removing z;, and y;; for 1<i<y,
1<j<k—2 and 1<I<2k—4 (j=1) or 1<I<2k—3(1<j <k-2).

For An<(k+1)m, there are three subcases according to the
value of 6. If 9<2k—4, H,, is obtained from H,, by removing
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Z,+1,1) for 1<I<O. If 6=2k-3, H,, is obtained from H, .24 DY
removing y,.11. There remains the case of 2k—3<6< m—1. Let
o =(0 —(2k=3))/(2k—2) ] and p=(6—(2k-3)) mod (2k—2). Ha,
is obtained from H,m.2¢ 3 by removing z,.1; and y,.1 j for 2<j
<a+1 and 1<I<2k—3, and removing z,+1 .+, for 1<I<p. We can
notice that the graph Hy.1ym is obtained from F, by deleting
all the vertices on each chord ujU.+1 €xcept u; and Ui for
I<i< k+1.

For An>(k+1)m, H,, is obtained from Hcq)m by removing
the vertices x,; for 1<j<@ . Hence we have the following
lemma.

Lemma 4. For 4k?>~2k—2< n< n, =2k?-3k—1, we have

ex(n;Cyy) > (K +1)(ka—1)—[((k—z)a—l)y+W+ p((o‘—l)+ao‘)]
(4)

where a= An—ym—(2k=3) /(2k-2), y=.An/m], An=ng—n and
m=2k’-6k+3. If An—ym<2k-3, then p=0 and p=An—ym,
otherwise p=1 and f=(An—(2k—3)(y+1)) mod 2k-2.
3) n>2k*-3k-1

If (n—2k>+3k+1) mod (2k*~2k—1)=0, we will construct the
Cy-free graphs of order n denoted by F; as follows. Let
t=2n/(2k’*—2k—1). Firstly, we construct a cycle of length 2t,
and label the vertices of the cycle by vy, Uy, Vo, Up,..., Vi, Ut
sequentially. Secondly, we divide the cycle into t copies of P;
(Vju;vieg for 1<i<t—1 and v;u;v;), and expand each Pz to a Ky;
by adding 2k—4 vertices, where X; 1, Xi2,..., Xi -4 are added to
ViUVisg for 1<i<t=1 and Xgq, Xe2 - - -, Xeok-4 t0 ViUvs. Now the t
copies of K,,_; are connected end to end. Let E;= UZEC({v;,
Uiy Viets Xi 1, Xi 25 -+ Xi2k-a3) U EC({Ve, Uty V1, Xe1, Xt.25- - Xe2k-43),
then |E;|=te. Thirdly, we connect u; and Uy, for 1<i<t/2, and
divide them into k—1 or k—2 parts according to the value of i
as follows. For an odd i, uju;.y, are divided into k—1 parts by
vertices Vi, Viz,-.-» Yik—2- The Ps (UiyiiYio) iS expanded to a
Kok-1—€ (UiyiyzeE(Fg)) by addlng vertices Zingy Zig2y « - -
Z; 124 Each of the remaining k—3 parts is expanded to Ky,
by adding 2k—3 vertices as follows. The vertices z;j 1, Zjjo, . - .
Zjjok-3 are added to YijYij+1 for 2< jf k-3, and Zik-21s Zik—22y « - -
Zik-2.2k-3 10 Vik-2Uisyz. LELEy =U S ECHYij, Vijet, Zijia, Zijos - - -
Zijas) YECHU, VYin VYia Zign  Ziia .
Ziroca)\{Uyiz}) VEC{Uivvz, Yik2 Zik2i Zik22 - - -
Zik22k3}), then |E;|=(k—2)o—1. For an even i, Uiy, are
divided into k—2 parts by vertices Vi, Viz,..., Yix-3, and each
part is expanded to a Ky.; by adding 2k—3 vertices, where
Zij1, Zijo2s- - -» Zij2k—3 are added to the j-th part for 1<j< k-2. Let
E:=U S ECH{Yij1 Yijs Zijir Zijos--o> Zijoks}) UECHU;, Yig,
L1 Zigz oo Zingk3}) Y ECHUisve, Viks Zikow Zik2z -
Zik-22¢3}), then |E3|=(k—2)c. Hence we have

V (F3)={v;, ui: 1<i <t} U
{xipl<i<t, 1 <j<2k-4}U
{yij1<i<t/2, 1 < j< k-3+(i mod 2)} U
{zij:1<i<t2, 1 < j< k-2, 1 <1< 2k-4 (for j=1) or 1< <
2k -3 (for 1<j<k— 2)},
E(Fs)=U%E, UE,.

Then [E(F3)|=((k—2)o>t/2-] t/4 ) +to=kts/2- t/4 |. Note that
F; is constructed from a graph G with girth g(G)>2k+1.
Furthermore, F; consists of kt/2 blocks of order 2k—1. So F;
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contains no Cy. Hence we have
ex(n, Cp)>kto/2- /4],
where (n—2k*+3k+1) mod (2k*~2k—1)=0. Taking k=5 as an

example, the graph F3 of order 273 is shown in Fig. 3. Hence
we have ex(273, C10)>1256.

For an odd i :
K()—F Kg K‘)
2712/' T~ 2722/Jr~ N 2152//
Zq, 115/3 Zi, 16\%{;21 Zi 2}%%;151 \12737
Yi,1 Yi2 Yi,3 Ui+6
For an even 1 :
Kg Kg Kg
Zi,1,2, // T~ Ri2,2, //4« o R332 -~ ~\\
2111{ 2117\%/{221 Zi, 2%51 \14737
Yi Uj+6

Fig. 3. The Cyo-free graphs of order 273.

Let ng denote the order of the graph Fs. If n=n,, we can
construct the C,-free graphs of order n by deleting vertices
from F; as follows, where no—(2k2—2k—2)§n<n0. Let An=ny—n
the graph obtained from F; by deleting some vertices is
denoted by Hyp,.

For An<2k—4, H,, is obtained from F; by removing the
vertices z; 1, for 1<I<An. For An=2k—3, H—3 is obtained from
Ha—4 by removing the vertex y; ;. For 2k—3<An<2k’-6k +3,
let o= (An—(2k—3))/(2k—2) ] and =(An—(2k—3)) mod (2k-2),
then Hy, is obtained from Hy 5 by removing z, 5, and y, j for
2<j<a+1 and 1<I<2k-3. If f=0, we remove z; .y for 1<I<p
from Has+2x 2. We can notice that the graph Hae gis is
obtained from F3 by deleting all the vertices on each chord
UiUg+yp €Xcept Uy and Ug.ys.

For An>2k?—6k+3, we need to delete the vertices of two
copies of Ky; including u; and uy.y, respectively. The detail
is as follows. For 2k*-6k+3<i<2k?-4k—1, H,, is obtained
from Hye g3 by removing the vertices X, for 1<j<An—
(2k*—6k+3). For An=2k’—4k, H., is obtained from Hye 41 by
removing the vertex u;. For An=2k*-4k+1, H,, is obtained
from Hye_4 by removing the vertex v;, and adding the edges
VoXqj, VoV and Vouy for 1<j<2k—4. For 2k*—4k+1<An<2k*—2k—
3, Han is obtained from Hje 41 by removing the vertices
Xirpj for 1<j<An—(2k*—4k+1). For An=2k’-2k-2, H,, is
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obtained from Hae2 53 by removing the vertex us.y,. Hence
we have the following lemma.

Lemma 5. Let ng>2k®~3k and n, mod (2k’~2k—1)=0. For
ng—(2k*—2k—2) <n<ny, we have

ex(n;C,,) > %-H{W+ p((o-—l)+ao-)},
(5)
where  a=| (An—(2k-3))/(2k-2)], t=2ng/(2k*~2k-1) and

An=ng¢—n. If An<2k—3 then p=0 and f=An, otherwise p=1 and
S=(An—(2k—3)) mod (2k—2).

I1l. CONCLUSION

By Lemma 1 and Lemma 3-5, we have the following
theorem,

Theorem 6.
(2k+1)o—My, n<2k?-3,
ex(n, Ca)> | (2k+1)o—M,, 2k*—3<n<4k*-2k- 2,

4k*—2k—2<n< 2k*-3k-1,
2k®-3k—1>n,

(k+1) (ko—1)-Ms,
kto/2-] /4 1-M,,

where o=(2k-1)(2k-2)/2. If n>2k*-3k—1, then t=2ny/
(2k*-3k-1), where n<ng<n+2k?—2k—2 and n, mod (2k*—2k—1)
=0. The values of M;(1<i<4) are equal to the ones enclosed in
square bracket of inequalities (1),(3)-(5) respectively.

For a graph G, let d(G)=|E(G)|/|V(G)| denote the standard
density. In Theorem 6, the lower bounds of ex(n, C,) are
(2k+1)(2k—1)(2k—2)/2 when n=4k*~2k—2. Let G be the graph
from which we obtained above lower bounds (see part A in
section I1), then d(G) = (2k—1)/2 which reaches a local peak.
Hence these graphs are more likely to be extremal graphs. In
fact, it was shown that ex(n,Cx)=70 for n=28 and k=3 in [9].
Furthermore, we have the following conjecture,

Conjecture 7. If n=4k’~2k—2 for k > 4, then

ex(n, Ca)=(2k+1)(2k—1)(2k-2)/2.
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