
  

 

Abstract—For integers k≥2 and n≥2k+1, let ex (n, C2k) 

denote the maximum number of edges in a C2k-free graph of 

order n, and EX (n, C2k) denote the set of all graphs with ex(n, 

C2k) edges. For k=3, it is well known that ex (n, C2k) > 

0.5338n
1+1/k

 for some large n. In this paper, we study the values 

of ex (n, C2k) for k≥3 when n is small, their lower bounds were 

given based the three graphs without C2k. The known result 

shows that it is the tight lower bound for k=3 and n=28, and we 

further conjecture that ex(n, C2k)=(2k+1)(2k−1)(2k−2)/2 for 

n=4k
2
−2k−2 and k≥4.  

 

Index Terms—Extremal graph, even cycle, lower bounds, 

Turán numbers. 

 

I. INTRODUCTION 

We consider only finite undirected graphs without loops or 

multiple edges. V(G) and E(G) denote the vertex set and edge 

set of graph G respectively. Pk is a path on k vertices and Ci is 

a cycle of length i. The length of the shortest cycle in G is 

referred to as the girth of G, denoted by g(G). A block of a 

graph is maximal nonseparable subgraph. Let EC(S) denote 

the edge set of the complete graph with vertex set S. 

For integers k≥2 and n≥2k+1, let ex(n, C2k) denote the 

maximum number of edges in a C2k-free graph of order n, and 

EX(n, C2k) denote the set of all graphs with ex(n, C2k) edges. 

There is a conjecture of Erdös and Simonovits [1] that ex(n, 

C2k) is asymptotically to (1/2)n1+1/k as n tends to infinity. 

Bollobás [2] proved that ex(n, C2k)~(1/2)n1+1/k for k=2. 

Lazebnik, Ustimenko and Woldar [3] studied certain families 

of C2k-free graphs, and proved that ex(n, C2k)≥((k−1) 

k−(1+1/k)+o(1))n1+1/k for k=3 and 5. In paper [4], they further 

improved the lower bounds on ex(n, C2k) to (0.5 + o(1)) n1+1/k 

for k=3. Füredi, Naor and Verstraëte [5] proved that ex(n, 

C2k)>0.5338n4/3, where n=t3+t2+t+1+( 5 −2)(t3+t2+t+1) 

and t=22α+1 for α being a positive integer. Hence, the smallest 

n for them is 723. Yang and Rowlinson found the values of 

ex(n, C4) for 21≤n≤31 [6] and the values of ex(n, C4) for 6 

≤n≤21 [7] by a computer. They also determined the 

corresponding extremal graphs. Sun [8] et al. expanded the 

results for ex(n, C6) to n≤26. 

In this paper, the lower bounds on ex(n, C2k) for k≥3 are 

studied when n is small. We first construct some C2k-free 

graphs of order n0=n0(k) to obtain the lower bounds on ex(n0, 

C2k). Then, the lower bounds on ex(n, C2k) for n< n0 are 

obtained from them by deleting some vertices. The known 

results in [9] show that lower bounds of ex(n, C2k) we 

obtained when n=4k2−2k−2 are tight. For the sake of 
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convenience, let σ denote the size of K2k−1 in the following 

sections, namely  

 

(2 1)(2 2)
.
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k k 
   

 

II. CONSTRUCTION AND PROOFS 

According to the value of k, we divide n into three parts, 

n≤4k2−2k−2, 4k2−2k−2<n≤2k3−3k−1 and n>2k3−3k−1. Then 

the lower bounds on ex(n, C2k) are obtained respectively. 

1) n≤4k2−2k−2 

We will construct a C2k-free graph F1 of order n=4k2 −2k−2 

as follows. Firstly, we construct a cycle of length 2(2k+1), 

and label the vertices of the cycle by v1, u1, v2, u2,..., v2k+1, 

u2k+1 sequentially. Secondly, we divide the cycle into 2k+1 

copies of P3 (viuivi+1 for 1≤i≤2k and v2k+1u2k+1v1), and expand 

each P3 to a K2k−1 by adding 2k−4 vertices, where xi,1, xi,2,…, 

xi,2k−4 are added to viuivi+1 for 1≤i≤2k and x2k+1,1, x2k+1,2,…, 

x2k+1,2k−4 to v2k+1u2k+1v1. Now the 2k+1 copies of K2k−1 are 

connected end to end. Let E1 =∪
2k 

i=1 EC({vi, ui, vi+1, xi,1, xi,2,…, 

xi,2k−4})∪EC({v2k+1, u2k+1, v1, x2k+1,1, x2k+1,2,…, x2k+1,2k−4}), 

then |E1| = (2k + 1)σ. Hence we have  

 

V(F1)={vi, ui: 1≤i ≤2k +1}∪{xi,j:1≤i≤2k +1, 1≤ j≤2k − 4}, 

E(F1)=E1. 

 

Note that we construct F1 from a cycle of length 2(2k+1), 

and expand each P3 to a K2k−1. Furthermore, F1 are consisting 

of 2k+1 blocks of order 2k−1. So F1 contains no C2k. Hence 

we have 

 

ex(n, C2k)>(2k + 1)σ, 

 

where n=4k2−2k−2. Taking k=5 as an example, the graph F1 

of order 88 is shown in Fig. 1. Hence we have ex(88, C10) 

≥396. 
 

 
Fig. 1. A C10-free graph of order 88. 

 

Let n0 denote the order of F1. If nn0, we can construct the 

C2k-free graphs of order n from F1 by deleting vertices as 
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follows. Let ∆n=n0−n, the graph obtained from F1 by deleting 

∆n vertices is denoted by H∆n. 

For ∆n≤2k−4, H∆n is obtained from F1 by removing x1,j for 

1≤j≤∆n. For ∆n=2k−3, H∆n is obtained from H2k−4 by 

removing u1. Let α=(∆n−(2k−3))/(2k−2) and β=(∆n−(2k−3)) 

mod (2k−2). For ∆n>2k−3, there are three cases according to 

the value of β. If β=0, H∆n is obtained from H2k−3 by removing 

xi,j, ui and vi for 2≤i≤α+1 and 1≤j≤2k−4. If 1≤β≤2k−4, H∆n is 

obtained from H(2k−2)α+2k−3 by removing xα+2,j for 1≤j≤β. If 

β=2k−3, H∆n is obtained from H(2k−2)α+2k−3+2k−4 by removing 

uα+2. 

Since the graphs H∆n are obtained from F1 by deleting ∆n 

vertices, H∆n contains no C2k for ∆n≥n0. Hence we have the 

following lemma. 

Lemma 1. For n≤n0 = 4k2− 2k−2, we have 
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where α=(∆n–(2k–3))/(2k–2) and ∆n=n0−n. If ∆n≤2k−3, then 

p=q=0, and β=∆n. If 2k−3<∆n≤4k−6, then p=1, q=0 and 

β=∆n−(2k−3). If ∆n>4k−6, p=q=1 and β=(∆n−(2k−3)) mod 

(2k−2). 

Especially for 2k2−3<n≤4k2−2k−2, we can use another 

method to construct C2k-free graphs of order n from F1 as 

follows. Let α=∆n/(2k − 2) and β=∆n mod (2k−2). There 

are three cases according to the value of β. If β=0, H∆n is 

obtained from F1 by removing xi,j, vi and ui, adding the edges 

vα+1x2k+1,j , vα+1v2k+1, vα+1u2k+1 for 1≤i≤α and 1≤j≤2k−4. Since  

H∆n contains no C2k, we need to delete the edges v2k+1v2k, 

v2kv2k−1,…, v2k−α+2v2k−α+1 from it. If 1≤β≤2k−4, H∆n is obtained 

from H(2k−2)α by removing xα+1,j for 1≤j≤β. If β = 2k−3, H∆n is 

obtained from H(2k−2)α+2k−4 by removing uα+1. Since the graphs 

H∆n are obtained from F1 by deleting ∆n vertices, we have 

H∆n contains no C2k. Hence we have the following lemma. 

Lemma 2. For 2k2−3<n ≤n0 = 4k2− 2k−2, we have 
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where α=∆n/(2k − 2), β=∆n mod (2k−2) and ∆n=n0−n. By 

Lemma 1 and Lemma 2, we have the lower bounds on ex(n, 

C2k) for 2k2−3<n≤ n0 = 4k2− 2k−2 as following. 

Lemma 3. For 2k2−3<n ≤n0 = 4k2− 2k−2, we have 

 

ex(n, C2k)≥(2k+1)σ−[min{Ω1, Ω2}],                     (3) 

 

where the values of Ω1 and Ω2 are equal to the ones enclosed 

in square bracket of the inequalities (1) and (2) respectively. 

2) 4k2−2k−2<n≤ 2k3−3k –1 

A C2k-free graph F2 of order n=2k3−3k−1 is constructed as 

follows. Firstly, we construct a cycle of length 2(2k+2), and 

label the vertices of the cycle by v1, u1, v2, u2,…, v2k+2, u2k+2 

sequentially. Secondly, we divide the cycle into 2k + 2 copies 

of P3 (viuivi+1 for 1≤i≤2k+1 and v2k+2u2k+2v1), and expand each 

P3 to a K2k−1 by adding 2k−4 vertices, where xi,1, xi,2,…, xi,2k−4 

are added to viuivi+1 for 1≤i ≤2k+1 and x2k+2,1, x2k+2,2,…, 

x2k+2,2k−4 to v2k+2u2k+2v1. Now the 2k+2 copies of K2k−1 are 

connected end to end. Let E1=∪
2k+1 

i=1 EC({vi, ui, vi+1, xi,1, xi,2,…, 

xi,2k−4})∪EC({v2k+2, u2k+2, v1, x2k+2,1, x2k+2,2,…, x2k+2,2k−4}), 

then |E1|=(2k +2)σ. Thirdly, we connect ui and ui+k+1 for 

1≤i≤k+1, and divide them into k−1 parts by vertices yi,1, 

yi,2, . . . , yi,k−2. The P3 (ui, yi,1, yi,2) is expanded to a 

K2k−1−e(uiyi,2∈E(F2)) by adding vertices zi,1,1, zi,1,2,…, zi,1,2k−4, 

where 1≤i≤k +1. Each of the remaining k−3 parts is expanded 

to K2k−1 by adding 2k−3 vertices as follows. The vertices zi,j,1, 

zi,j,2,…, zi,j,2k−3 are added to yi,jyi,j+1 for 2≤j≤k−3, and zi,k−2,1, 

zi,k−2,2,…, zi,k−2,2k−3 to yi,k−2ui+k+1, where 1≤i≤k+1. Let E
i 

2=∪
k−3 

j=2

EC({yi,j, yi,j+1, zi,j,1, zi,j,2,…, zi,j,2k−3})∪(EC({ui, yi,1, yi,2, zi,1,1, 

zi,1,2,…, zi,1,2k−4})\{uiyi,2}) ∪EC({ui+k+1, yi,k−2, zi,k−2,1, zi,k−2,2,…, 

zi,k−2,2k−3}), then |E
i 

2| = (k−2)σ−1. Hence we have 

 

V (F2) ={vi, ui:1≤i ≤2k+2}∪ 

{xi,j:1≤i ≤ 2k + 2, 1≤ j≤ 2k −4}∪ 

{yi,j:1≤ i ≤ k +1, 1 ≤ j ≤ k − 2}∪ 

{zi,j,l:1≤ i ≤ k + 1, 1 ≤ j ≤ k − 2, 1≤ l ≤ 2k – 4 (for 

j=1) or 1≤l≤ 2k – 3 (for 1<j≤ k − 2)}, 

E(F2)=∪
k+1 

i=1 E
i 

2 ∪E1. 

 

Then |E(F2)|=((k − 2)σ − 1)×(k + 1)+(2k+2)σ = (k+1)(kσ 

−1). Note that F2 is constructed from a graph G with girth 

g(G)> 2k+1. Furthermore, F2 consists of k(k + 1) blocks of 

order 2k−1. So F2 contains no C2k. Hence we have 

ex(n, C2k) ≥(k + 1)(kσ − 1), 

where n=2k2−3k−1. Taking k=5 as an example, the graph F2 

of order 234 is shown in Fig. 2. Hence we have ex(234, C10) ≥ 

1074. 
 

 

 
Fig. 2. The graph F2 of order 234. 

 

Let n0 denote the order of the graph F2. If n=n0, we can 

construct the C2k-free graphs of order n by deleting vertices 

from F2 as follows. Let ∆n=n0−n, the graph obtained from F2 

by deleting some vertices is denoted by H∆n. Let m=2k2−6k+3 

be the number of the vertices on each chord uiui+k+1 except ui 

and ui+k+1 for 1≤i≤k+1. And let γ= ∆n/m and θ= ∆n−γm. Hγm 

is obtained from F2 by removing zi,j,l and yi,j for 1≤i≤γ, 

1≤j≤k−2 and 1≤l≤2k−4 ( j=1) or 1≤l≤2k−3(1<j ≤k−2). 

For ∆n≤(k+1)m, there are three subcases according to the 

value of θ. If θ≤2k−4, H∆n is obtained from Hγm by removing 
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zγ+1,1,l for 1≤l≤θ. If θ=2k−3, H∆n is obtained from Hγm+2k−4 by 

removing yγ+1,1. There remains the case of 2k−3<θ≤ m−1. Let 

α = (θ −(2k−3))/(2k−2) and β=(θ−(2k−3)) mod (2k−2). H∆n 

is obtained from Hγm+2k−3 by removing zγ+1,j,l and yγ+1,j for 2≤j 

≤α+1 and 1≤l≤2k−3, and removing zγ+1,α+2,l for 1≤l≤β. We can 

notice that the graph H(k+1)m is obtained from F2 by deleting 

all the vertices on each chord uiui+k+1 except ui and ui+k+1 for 

1≤i≤ k+1. 

For ∆n>(k+1)m, H∆n is obtained from H(k+1)m by removing 

the vertices x1,j for 1≤j≤θ . Hence we have the following 

lemma. 

Lemma 4. For 4k2−2k−2< n≤ n0 =2k2−3k−1, we have 

 

2
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where α=∆n−γm−(2k−3)/(2k−2), γ=∆n/m, ∆n=n0−n and 

m=2k2−6k+3. If ∆n−γm≤2k−3, then p=0 and β=∆n−γm, 

otherwise p=1 and β=(∆n−(2k−3)(γ+1)) mod 2k−2. 

3) n>2k3−3k –1 

If (n−2k3+3k+1) mod (2k2−2k−1)≡0, we will construct the 

C2k-free graphs of order n denoted by F3 as follows. Let 

t=2n/(2k2−2k−1). Firstly, we construct a cycle of length 2t, 

and label the vertices of the cycle by v1, u1, v2, u2,..., vt, ut 

sequentially. Secondly, we divide the cycle into t copies of P3 

(viuivi+1 for 1≤i≤t−1 and vtutv1), and expand each P3 to a K2k−1 

by adding 2k−4 vertices, where xi,1, xi,2,..., xi,2k−4 are added to 

viuivi+1 for 1≤i≤t−1 and xt,1, xt,2 . . . , xt,2k−4 to vtutv1. Now the t 

copies of K2k−1 are connected end to end. Let E1= ∪t−1 

i=1 EC({vi, 

ui, vi+1, xi,1, xi,2,…, xi,2k−4})∪EC({vt, ut, v1, xt,1, xt,2,…, xt,2k−4}), 

then |E1|=tσ. Thirdly, we connect ui and ui+t/2 for 1≤i≤t/2, and 

divide them into k−1 or k−2 parts according to the value of i 

as follows. For an odd i, uiui+t/2 are divided into k−1 parts by 

vertices yi,1, yi,2,…, yi,k−2. The P3 (uiyi,1yi,2) is expanded to a 

K2k−1−e (uiyi,2E(F3)) by adding vertices zi,1,1, zi,1,2, . . . , 

zi,1,2k−4. Each of the remaining k−3 parts is expanded to K2k−1 

by adding 2k−3 vertices as follows. The vertices zi,j,1, zi,j,2, . . . , 

zi,j,2k−3 are added to yi,jyi,j+1 for 2≤ j≤ k−3, and zi,k−2,1, zi,k−2,2, . . . , 

zi,k−2,2k−3 to yi,k−2ui+t/2. Let E
i 

2 =∪
k−3 

j=2 EC({yi,j, yi,j+1, zi,j,1, zi,j,2, . . . , 

zi,j,2k−3})∪(EC({ui, yi,1, yi,2, zi,1,1, zi,1,2, . . . , 

zi,1,2k−4})\{uiyi,2})∪EC({ui+t/2, yi,k−2, zi,k−2,1, zi,k−2,2, . . . , 

zi,k−2,2k−3}), then |E
i 

2 |=(k−2)σ−1. For an even i, uiui+t/2 are 

divided into k−2 parts by vertices yi,1, yi,2,…, yi,k−3, and each 

part is expanded to a K2k−1 by adding 2k−3 vertices, where 

zi,j,1, zi,j,2,…, zi,j,2k−3 are added to the j-th part for 1≤j≤ k−2. Let 

E
i 

2 =∪k−3 

j=2 EC({yi,j−1, yi,j, zi,j,1, zi,j,2,…, zi,j,2k−3})∪EC({ui, yi,1, 

zi,1,1, zi,1,2, …, zi,1,2k−3})∪EC({ui+t/2, yi,k−3, zi,k−2,1, zi,k−2,2, ..., 

zi,k−2,2k−3}), then |E
i 

2|=(k−2)σ. Hence we have 

 

V (F3)={vi, ui:1≤i ≤t}∪ 

{xi,j:1≤i ≤t, 1 ≤ j ≤ 2k−4}∪ 

{yi,j:1≤ i ≤t/2, 1 ≤ j≤ k−3+(i mod 2)}∪ 

{zi,j,l:1≤i≤t/2, 1 ≤ j≤ k−2, 1 ≤ l ≤ 2k–4 (for j=1) or 1≤ l ≤ 

2k –3 (for 1<j≤k− 2)}, 

E(F3)=∪
t/2 

i=1E
i 

2 ∪E1. 

 

Then |E(F3)|=((k−2)σ×t/2−t/4)+tσ=ktσ/2−t/4. Note that 

F3 is constructed from a graph G with girth g(G)>2k+1. 

Furthermore, F3 consists of kt/2 blocks of order 2k−1. So F3 

contains no C2k. Hence we have 

 

ex(n, C2k)>ktσ/2−t/4, 

 

where (n−2k3+3k+1) mod (2k2−2k−1)≡0. Taking k=5 as an 

example, the graph F3 of order 273 is shown in Fig. 3. Hence 

we have ex(273, C10)>1256. 
 

 

 

Fig. 3. The C10-free graphs of order 273. 

 

Let n0 denote the order of the graph F3. If n=n0, we can 

construct the C2k-free graphs of order n by deleting vertices 

from F3 as follows, where n0−(2k2−2k−2)≤n<n0. Let ∆n=n0−n, 

the graph obtained from F3 by deleting some vertices is 

denoted by H∆n. 

For ∆n≤2k−4, H∆n is obtained from F3 by removing the 

vertices z1,1,l for 1≤l≤∆n. For ∆n=2k−3, H2k−3 is obtained from 

H2k−4 by removing the vertex y1,1. For 2k−3<∆n≤2k2−6k +3, 

let α=(∆n−(2k−3))/(2k−2) and β=(∆n−(2k−3)) mod (2k−2), 

then H∆n is obtained from H2k−3 by removing z1,j,l and y1,j for 

2≤j≤α+1 and 1≤l≤2k−3. If β=0, we remove z1,α+2,l for 1≤l≤β 

from H2k−3+(2k−2)α. We can notice that the graph H2k2−6k+3 is 

obtained from F3 by deleting all the vertices on each chord 

u1u1+t/2 except u1 and u1+t/2.  

For ∆n>2k2−6k+3, we need to delete the vertices of two 

copies of K2k−1 including u1 and u1+t/2 respectively. The detail 

is as follows. For 2k2−6k+3<i≤2k2−4k−1, H∆n is obtained 

from H2k2−6k+3 by removing the vertices x1,j for 1≤j≤∆n− 

(2k2−6k+3). For ∆n=2k2−4k, H∆n is obtained from H2k2−4k−1 by 

removing the vertex u1. For ∆n=2k2−4k+1, H∆n is obtained 

from H2k2−4k by removing the vertex v1, and adding the edges 

v2xt,j, v2vt and v2ut for 1≤j≤2k−4. For 2k2−4k+1<∆n≤2k2−2k− 

3, H∆n is obtained from H2k2−4k+1 by removing the vertices 

x1+t/2,j for 1≤j≤∆n−(2k2−4k+1). For ∆n=2k2−2k−2, H∆n is 
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obtained from H2k2−2k−3 by removing the vertex u1+t/2. Hence 

we have the following lemma. 

Lemma 5. Let n0>2k3−3k and n0 mod (2k2−2k−1)≡0. For 

n0−(2k2−2k−2) ≤n≤n0, we have 

 

2

(4 3 )
( ; ) (( 1) ) ,

2 4 2
k

kt t k
ex n C p

    
        

   

  
 

(5) 

 

where α=(∆n−(2k−3))/(2k−2), t=2n0/(2k2−2k−1) and 

∆n=n0−n. If ∆n≤2k−3 then p=0 and β=∆n, otherwise p=1 and 

β=(∆n−(2k−3)) mod (2k−2). 

 

III. CONCLUSION 

By Lemma 1 and Lemma 3-5, we have the following 

theorem, 

Theorem 6. 

 

 

ex(n, C2k)≥ 

(2k+1)σ−M1, n≤2k2−3, 

(2k+1)σ–M2, 2k2−3<n≤4k2−2k− 2, 

(k+1)(kσ−1)–M3, 4k2−2k−2<n≤ 2k3−3k−1, 

ktσ/2−t/4–M4, 2k3−3k−1>n, 

where σ=(2k−1)(2k−2)/2. If n>2k3−3k−1, then t=2n0/ 

(2k2–3k–1), where n≤n0≤n+2k2−2k−2 and n0 mod (2k2−2k−1) 

≡0. The values of Mi(1≤i≤4) are equal to the ones enclosed in 

square bracket of inequalities (1),(3)-(5) respectively. 

For a graph G, let d(G)=|E(G)|/|V(G)| denote the standard 

density. In Theorem 6, the lower bounds of ex(n, C2k) are 

(2k+1)(2k−1)(2k−2)/2 when n=4k2−2k−2. Let G be the graph 

from which we obtained above lower bounds (see part A in 

section II), then d(G) = (2k−1)/2 which reaches a local peak. 

Hence these graphs are more likely to be extremal graphs. In 

fact, it was shown that ex(n,C2k)=70 for n=28 and k=3 in [9]. 

Furthermore, we have the following conjecture, 

Conjecture 7. If n=4k2−2k−2 for k ≥ 4, then 

 

ex(n, C2k)=(2k+1)(2k−1)(2k−2)/2. 
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