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Abstract—The purpose of this paper is to investigate the 

global exponential stability of a class of impulsive bidirectional 

associative memories (BAM) neural networks that possesses 

Cohen-Grossberg dynamics. By constructing and using some 

inequality techniques and a fixed point theorem sufficient 

conditions are obtained to ensure the existence and global 

exponential stability of the solutions for impulsive 

Cohen-Grossberg neural networks with time delays and 

distributed delays. 

 

Index Terms—Cohen-grossberg neural networks, impulses, 

globally exponential stability, time delay, distributed delay. 

 

I. INTRODUCTION 

The Cohen-Grossberg neural network models proposed by 

Cohen and Grossberg [1] have been widely applied to various 

problems in scientific and engineering fields [1]. BAM 

neural networks are useful in many fields such as pattern 

recognition and automatic control, the stability properties and 

applications of BAM’s models have been researched by 

To the best of our knowledge, there are few results on the 

stability of impulsive Cohen-Grossberg neural networks with 

both time-varying and distributed delays [9]-[10]. We study 

the stability problem of BAM impulsive Cohen-Grossberg 

neural networks with time-varying and distributed delays and 

derived to guarantee the global asymptotic stability of the 

solution by using some inequality techniques, fixed point 

theorem and some analysis techniques. We consider 

impulsive Cohen-Grossberg-type BAM neural networks with 

time-varying and distributed delays which are described by 
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the following functional integro-differential equations: 
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where n  and m  correspond to the number of neurons in the 

X   layer and Y  layer, respectively, ( )s  and ( )s  are 

bounded continuous functions on ( ,0] , and 

( ) = ( ) ( ), ( ) = ( ) ( )i k i k i k j k j k j kx t x t x t y t y t y t        are the 

impulses at the moments kt  and 1 20 < < <t t   is a strictly 

increasing sequence such that l =t kim t  , and 

( ), ( )i jx t y t  are the activations of the i th neuron in XF  and 

the j th neuron in YF , respectively. The functions ,i ja b  are 

abstract amplification functions and ,i j   are 

self-excitation rate functions. ( ), ( )ji ijt t   are positive time 

delays corresponding to the finite speed of the axonal signal 

transmission. ,j if g  present the activation functions of the 

neuron. The functions , , ( ), ( )ji ij ji ijp q r t s t  are the 

connection weights, they denote the strengths of connectivity 

between the cell j  in YF  and cell i  in XF  at time 

, ( ), ( )ji ijt t t t t   , and ,i jI J  denote the i th and j th 

component of an external input source introduced from 
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many scholars see [2]-[6] and references are given therein. 

Most widely used neural networks are neither of purely 

continuous-time nor of purely discrete-time type [7]-[10]. 

Also there has been a new category of neural networks called 

impulsive neural networks, which display a combination of 

characteristics of both continuous-time and discrete-time 

systems. The bidirectional associative memory (BAM) 

neural network model known as an extension of the 

unidirectional auto-associator of Hopfield [11], and 

references cited therein. The method was introduced first by 

Kosko [12].



  

outside the network to the cell i  in XF  and the cell j  in YF , 

respectively (see [8] and references cited therein). As usual in 

the theory of impulsive differential equations, at the points of 

discontinuity kt  of the solution  
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is said to be a solution of the system (1)(1)(2). 

Throughout this paper we assume the following conditions 

are satisfied: 

H1: ( ) > 0, ( ) > 0i i j ja x b y  and ,i ja b  are bounded, that is, 

there exist positive constants , iia a , and , jjb b  such that  
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H2: The delayed feedback functions ,ji ijr s  are real-valued 

nonnegative continuous functions defined on [0, )  with 
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Here ,ji ijr s  are nonnegative constants. There exists a 

positive constant number,  such that 
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and there must be constants 1 2,   satisfying 
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where ( )R s  and ( )S s  are matrix-valued functions with 

entries respectively ( )jir s  and ( )ijs s  (see below). 

H3: There exist positive constant numbers ,j iL M  such 
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for any , , =1,2, , , =1,2, ,u v i n j m    and u v . 

H4: The impulsive operators  
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Assume that system (3) has a unique equilibrium point 
* *( , )x y , then let 
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then system (3) can be written as 
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The initial conditions associated with system (4) can be 

defined as  
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Let us denote 
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and let ( ), ( )i j    be real-valued continuous functions 

defined on ( ,0] . The model introduced (1)(1)(2) is 

studied [7], [8], [10] with delays and impulses. 

 

II. MAIN RESULTS 
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where the impulses   , ( )k kI J   satisfy  
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Repeating the above procedure on the successive interval 

we can easily conclude that the solutions of the system (4) are 

uniformly bounded. The proof is completed. 

Theorem 2. [10] Assume that 1 4H H  are satisfied, then 

the system (3) has a unique equilibrium point which is a 

solution of the system (5).  

Proof. We proved in Theorem 1 that all solutions of 

system (4) are bounded, that means for any initial value, if  
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Using the inequalities (7)(7)(8) it can be easily concluded 

that 
 

1 1
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
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     

     

(11) 

 

Provided that 
0 < < 1

 where 
  

1 1= { ( ) , ( ) }.max B A             
 

Because of the contraction mapping principle the mapping 

F  has a unique fixed point 
* *( , )W T  and this result 

completes the proof. 

Theorem 3. Suppose that the assumptions 1 4H H  are 

satisfied, then the equilibrium point of the system (4)  is 

globally exponentially stable. 

Proof. From 1 2H H  define 0 < <a  and 
 

1 1( ) ( )
= { , } 1

B A
max

a a

   

 

    
 

 

   
        (12) 
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III. CONCLUSION 

We study the stability problem of BAM impulsive 

Cohen-Grossberg neural networks with time-varying and 

distributed delays by constructing and using some inequality 

techniques and fixed point theorem. We obtained sufficient 

conditions to ensure the existence and global exponential 

stability of the solutions for impulsive Cohen-Grossberg 

neural networks with time-varying and distributed delays. 
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To prove the assertion for kt t for any , C  and 

>1 it can be shown that the following inequality holds: 

     < tu t v t E e                      (13)

for all t>0 and kt t

Assume that (13) is not true and there must be some 

2 > 0t such that 

      2
2 2 =

t
u t v t E e





          

     
(14)

for 2 > 0,t and 2 kt t .

Following the similar procedure presented in the reference 

[10], one can easily reach a contradiction and that result 

completes the proof of the theorem.
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