
  

 

Abstract—The goal of this study is to adapt the multiscale 

fluid solver EULAG [Prusa et al., Computers & Fluids, vol 37, 

2008] to the future GPU-based high-performance computing 

platforms. The EULAG model has a proven record of successful 

applications in a range of environmental fluid dynamics, and 

excellent efficiency and scalability on conventional 

supercomputer architectures. Currently, the model is being 

implemented as a new dynamical core of COSMO (Consortium 

for Small-scale Modeling) weather prediction framework. The 

EULAG code combines features of a stencil and point wise 

computations. Its communication scheme consists of both halo 

exchange subroutines and global reduction functions. Within 

the project, two main modules of EULAG, namely the 

multidimensional positive definite advection transport 

algorithm, MPDATA, and the variational generalized conjugate 

residual, GCR, elliptic pressure solver are analyzed and 

optimized. Relevant techniques have been chosen and applied to 

accelerate code execution on modern GPU architectures: stencil 

decomposition, block decomposition (with weighting analysis 

between computation and communication), reduction of 

intercache communication by partitioning of cores into 

independent teams, cache reusing and vectorization. 

Testing and validation of the new GPU implementation have 

been carried out based on modeling decaying turbulence of a 

homogeneous incompressible fluid in a triply-periodic cube. 

Simulations performed using the standard version of EULAG 

and its new GPU implementation give similar solutions. 

Preliminary results of the parallel performance of the new 

implementation show a promising increase in terms of 

computational efficiency. 

 
Index Terms—Anelastic model, EULAG, hybrid 

architectures, parallel computing.  

 

I. INTRODUCTION 

In recent years there has been growing interest in 

employing heterogeneous and hybrid supercomputing 

architectures for modeling complex physical processes. 

Especially promising application for the new (CPUs/GPUs) 

architectures is computational fluid dynamics (CFD) and 

particularly the numerical weather prediction (NWP). 

Adaptation of conventional CFD codes to modern 
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supercomputing architectures offers a unique opportunity for 

modeling complex physical flows with accuracy greater than 

ever before. The new parallel computers based on multi- and 

many-core processors (CPUs) or graphics processing units 

(GPUs) enable to increase computational efficiency and 

reduce energy consumption. Consequently, more 

computational resources, i.e. processing units and memory 

can be employed. This in turn allows increasing complexity 

of the models, so that more details which may affect the 

evolution of the system can be captured. To be able to run the 

traditional codes efficiently on the new hybrid platforms it is 

necessary to redesign their structures. Nowadays, several 

research centers around the world are involved in various 

projects aimed at adapting weather forecasting models to 

future high-performance computing platforms. One of such 

priority projects “Performance on Massively Parallel 

Architectures,” POMPA, has been launched in 2010 by the 

COSMO [1] consortium. The goal of the POMPA project is 

to develop a prototype implementation of the current 

COSMO NWP model for modern GPU and CPU based 

computing hardware. To-date results show a large potential 

of the new implementations in terms of reduction of 

time-to-solution. It is worth noting that the hardware costs for 

running the redesigned model, both on CPU-based and 

GPU-based machines, are significantly lower. The newly 

developed dynamical core is robust and capable of running 

COSMO-7 (horizontal resolution 7 km) and COSMO-2 

(horizontal resolution 2.2 km); grid resolution ~2 km is 

nowadays common in regional weather forecast models used 

in operation. 

Another example of a successful GPU implementation is 

the Weather Research and Forecasting (WRF) Model [2]. 

WRF is a mesoscale numerical weather prediction system 

designed for both atmospheric research and for operational 

forecasting. Porting the microphysics module to GPU 

allowed obtaining a 10-fold increase in its computational 

performance. The microphysics module is an important and 

computationally demanding component of the WRF model. 

The module represents only 1% of the total source code but 

its adaptation to GPU resulted in a 20% increase in the 

computational performance of the entire model. Adapting of 

selected modules of WRF to GPU allowed to achieve 

tremendous speedups in modeling weather forecast, ocean 

dynamic and tsunami waves [3]. 

The adaptation of traditional NWP codes to the new 

machines based on GPUs allows increasing numerical 

efficiency and enables to take full advantage of the available 

computational resources. This offers a unique opportunity to 

develop simulations with finer grid resolutions and 

computational domains larger than ever before. Refined grid 
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resolutions in simulation of meso- and large-scale 

atmospheric flows for NWP and climate studies may have 

profound impact on improving the reliability of prognoses. 

This is because at the convective scales of O(1) km, flows are 

highly turbulent and contain a significant amount of energy 

[4]. In order to explicitly resolve or even admit convective 

processes, grid spacing has to be fine enough. Due to 

computational constraints these processes are grossly 

underresolved in today’s simulations. The new methods and 

algorithms at work on modern architectures should allow to 

dispense with a large part of convective parameterizations in 

global models and improve numerical weather forecasts. 

The aim of this study is to develop effective methods and 

algorithms for adapting multiscale model EULAG [5] for 

heterogeneous and hybrid supercomputing architectures. 

EULAG belongs to a class of numerical models for low Mach 

number flows in geo- and astrophysics. The dynamical core 

of EULAG is based on the non-hydrostatic Euler equations, 

either fully compressible or anelastic. The model employs 

generalized curvilinear coordinate description [6], 

finite-volume non-oscillatory transport algorithm MPDATA 

[7] and the advanced elliptic solver GCR [8]. Since 2008, 

EULAG is a candidate for the dynamical core of a very-high 

resolution NWP model of the COSMO consortium. The 

dynamical core of EULAG has considerable advantages 

concerning conservation properties. Moreover, modeling of 

atmospheric flows with EULAG does not impose severe 

constraints on the maximal allowable steepness of the surface 

orography. 

In this paper we present our recent efforts aimed at 

adapting two main modules of EULAG, namely advection 

algorithm MPDATA and iterative elliptic pressure solver 

GCR to GPU based supercomputers. We describe the crucial 

detail of different strategies used to accelerate code execution, 

namely stencil decomposition, block decomposition (with 

weighting analysis between computation and 

communication), reduction of inter-cache communication by 

partitioning of cores into independent teams, cache reusing 

and vectorization. 

The remainder of the paper is organized as follows. 

Section II describes the key details of the EULAG code. In 

Section III main concepts of the new MPDATA 

implementation and some preliminary results of performance 

tests are presented. Analogously, Section IV contains the 

discussion of the new GCR implementation. Validation of 

the new GPU implantation is presented in Section V. Key 

conclusions are summarized in Section VI. 
 

II. METHODOLOGY 

Porting the EULAG solver to modern GPU architectures is 

a highly complex task; therefore, the entire process had to be 

divided into several stages. Essential programming work was 

preceded by a number of preliminary tasks. The initial efforts 

were focused on extracting the main driver with MPDATA 

advection and the GCR elliptic solver subroutines from the 

main code. We used the latest version of the EULAG in 

which parallelization scheme is based on the 

three-dimensional spatial MPI domain decomposition [9]. 

Special options and extensions of no interest to this project 

were removed from the code. The call tree has been 

reformulated to better expose mathematical structure of the 

code. Further, careful analysis of the structure of memory 

references has been done. We studied different strategies for 

overlapping computations and interprocesses 

communication. 

EULAG employs pure MPI programming model for 

parallelization between all cores. The computational grid is 

divided in all three dimensions and each MPI process 

advances the solution in its subdomain. The computational 

domain is decomposed evenly so that MPI processes have the 

same number of grid points and the same computational load. 

All-to-all communications are required for computing global 

reduction operations, whereas point-to-point 

communications exchange halo regions between the nearest 

neighbors in X, Y and Z dimensions. The data arrays are 

explicitly dimensioned to contain a subgrid of a total array 

corresponding to the entire model grid, plus an extra space 

for a copy of the neighboring processors’ boundary cells, 

commonly referred as ”hallo cells”. Each subgrid is then 

assigned to only one processor, though the halo regions may 

vary through the code. To minimize communication cost, the 

blocks of data corresponding to halo regions are exchanged 

partially and only when needed. 

 

III. ADAPTATION OF ADVECTION TRANSPORT ALGORITHM 

MPDATA TO GPU ARCHITECTURES 

In this Section, we describe our new approach that allows 

efficiently distribute computational tasks of MPDATA 

across GPU resources. The proposed technique is based on 

stencil computations and is an extension of the concept 

described in previous studies [10]-[13]. In this paper, we 

assume prior knowledge about OpenCL programming and 

terminology. For an informative description of the crucial 

aspects of GPU programming, the reader is referred to 

reference [14]. 

The MPDATA algorithm is a set of 17 stencils [15], where 

each stencil may depend on one or more others. MPDATA 

requires loading 5 input matrices and returns only one. We 

assume that the size of the computational grid is n × m × l. In 

previous work [11], it has been shown that MPDATA is 

strongly memory-bounded. The main bottleneck in 

adaptation of MPDATA to GPU architecture resides in 

memory traffic between global and local GPU memory. Our 

idea of adaptation is based on an appropriate distribution of 

stencils onto GPU kernels in order to minimize the number of 

GPU memory transaction between local and global memory. 

For this purpose we propose a method, where a different 

number of GPU kernels is considered. In each configuration, 

a single kernel processes a different number of stencils. For 

each configuration, we estimate a number of GPU memory 

transactions and then select the configuration, where the 

number of memory transaction is minimized. 

A. GPU Kernel Processing 

Each GPU kernel is processed by n × m work-items (GPU 

threads), that are grouped into work-groups. Each work-item 

is responsible for computing one element of data grid. Each 
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work group contains g1  g2 work-items, so the total number 



  

 

 

 

 

 
Fig. 1. A single data chunk of MPDATA matrix with its halo areas processed 

by a single work-group. 

 

In this approach, we first copy the data from GPU global 

memory to registers, and then, for each iteration across l 

dimension, we move the data between registers and local 

memory. This method is illustrated in Fig. 2. 
 

 
Fig. 2. GPU kernel processing. 

 

B. Implementation Tuning 

The main challenge in the efficient adaptation of 

MPDATA to GPU platforms is reduction of global memory 

usage and optimization of data transfer. In the new approach 

we address this problem through a comprehensive analysis of 

the data flow. Distribution of computational tasks is preceded 

by estimation of local memory utilization, sizes of halo areas 

(ghost zones), data dependencies between and within stencils. 

Based on such extensive analysis we are able to specify the 

most favorable number of GPU kernels and set an optimal 

distribution of stencils across kernels and the sizes of 

work-groups for each kernel. As a consequence, a load 

balancing is maintained and data communication is 

minimized and well structured. 

Our analysis is based on the estimation of the number of 

GPU memory transactions (assuming 64-bits access mode) 

from global to local memory (Gf) and from local to global 

memory (Gt). 
 

1 2 2 / 1

2 / 1 ,

f p ls

ls p m m

G (g ,g )= ceil((g + j ) u ) g +

ceil(g u ) (i +i )+ g j



 

                 
(1)

 

 

1 2 2 / 1t lsG (g ,g )= ceil(g u ) g                   (2) 
 

where ceil (x) returns a rounded up value of x, uls is the 

number of load/store units for each compute unit. The halo 

area can have a different size for each side of the g1 × g2 data 

chunk: i) ip × g2 from the top; ii) im × g2 from the bottom; iii) 

jm × g1 on the left side, and finally iv) jp × g1 on the right side. 

The number of bytes that needs to be allocated in the local 

memory to store g1 × g2 data chunk can be computed as 

follows 
 

1 2 1 2mem m p m p elL (g ,g )=(g +i +i )(g + j + j ) S       (3) 

 

where Sel is size of the grid element in bytes. 

The number of transactions to the GPU global memory can 

be greatly reduced by merging two stencils into one. To 

perform this task a special procedure has been developed. 

The procedure has a build-in set of conditions, including: 

1) if merged stencils are independent, then the local 

memory usage and the number of transactions is 

accumulated from each stencil; 

2) if the output matrix of the first stencil is among the input 

matrices of the second stencil, then the halo area of the 

first stencil is extended by the halo area of the second 

stencil, otherwise 

3) The halo area is a maximum from the halo areas for each 

stencil.  

This procedure is called repeatedly in order to build a set of 

possible configurations of kernels. Finally, the simple 

minimum algorithm estimates the best configuration of 

MPDATA, including the number of kernels, the mapping of 

stencils onto kernels, and the work-groups sizes. 

C. Parallel Performance 

To examine the scalability of the MPDATA algorithm in 

the stand-alone version, a number of numerical experiments 

have been performed. All tests presented in this paper were 

conducted on NVIDIA GTX TITAN GPU [17]. This GPU 

graphics card is based on the Kepler architecture and includes 

14 streaming multiprocessors (SMX), each consist of 64 

double precision units (DP units) with 48 KB of shared 

memory and 16 KB of L1 cache.  

We compare parallel performance of the original CPU 

version of MPDATA with the new GPU implementation. 

The CPU used in the test is Intel Core i7-3770 with 3.4 GHz 

clock frequency. The input data were defined as an array of 

random values. The sizes of grid range from 16×16×16 to 

512×512×64. The CPU tests have been performed for a 

sequential (one core) and parallel (4 cores) version of 

MPDATA. 

The first test was conducted for 100 time steps. The 

performance results are shown in Table I. Our GPU 

implementation allows achieving speedup of about 5 over the 
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of work-groups is n/g1  m/g2. Fig. 1 illustrates a single data 

chunk of MPDATA matrices, which is processed by a single 

work-group. In this paper, we focus on the analysis of 

coalesced and uncoalesced memory areas of the data chunk.

To increase data locality within work-groups, we employ 

widely used method of 2.5D blocking [16] in which two 

dimensional work-groups are responsible for computing g1 

g2 data chunks. The loop inside kernel is used to traverse the 

grid in the l dimension. Since, the MPDATA algorithm 

requires to store at most 3  (g1  g2) data chunks at the same 

time, we use a queue of data chunks placed in registers and 

local memory.



  

parallel CPU version and of about 15.7 over the sequential 

version. 
 

TABLE I: EXECUTION TIME OF GPU AND CPU VERSIONS FOR 100 TIME 

STEPS 

 CPU 
GPU [s] 

n × m × l 1 core [s] 4 cores [s] 

16 × 16 × 16 0.044 0.016 0.087 

32 × 32 × 16 0.164 0.048 0.100 

64 × 64 × 16 0.636 0.192 0.112 

64 × 64 × 64 2.216 0.776 0.366 

128 × 128 × 64 10.484 3.316 0.792 

128 × 128 × 128 20.517 6.624 1.583 

256 × 256 × 64 40.374 12.868 2.560 

256 × 256 × 128 - 24.373 5.221 

256 × 256 × 256 - 52.776 10.516 

512 × 512 × 64 - 50.743 9.689 

 

The speedups for all grid sizes are listed in Table II. The 

GPU version is profitable for mesh sizes greater than or equal 

to 64×64×16. Computations on smaller grids do not allow 

taking full advantage of GPU resources; hence the GPU 

performance is rather weak for these cases. 
 

TABLE II: SPEEDUP  

 Speedup 

n × m × l 1 core/GPU 4 cores/GPU 

16 × 16 × 16 0.51 0.18 

32 × 32 × 16 1.64 0.48 

64 × 64 × 16 5.68 1.71 

64 × 64 × 64 7.15 2.12 

128 × 128 × 64 13.24 4.19 

128 × 128 × 128 13.15 4.18 

256 × 256 × 64 15.77 5.03 

256 × 256 × 128 - 4.67 

256 × 256 × 256 - 5.02 

512 × 512 × 64 - 5.24 

 

Significantly better results of the code scalability have 

been obtained in the second test. The second test has been 

performed for 1000 time steps. The speedup results are 

illustrated in Fig. 3. In the longer simulation, we achieved 

speedup about 15 times comparing to the CPU parallel 

version and about 40 times comparing to the CPU sequential 

version. 
 

 
Fig. 3. Speedup of GPU version over CPU versions for 1000 time step. 

 

IV. ADAPTATION OF ELLIPTIC SOLVER COMPUTATION TO 

GPU ARCHITECTURES 

A. Main Objectives 

Several different techniques for porting the GCR elliptic 

solver to hybrid architectures have been presented in 

previous study [18]. The proposed techniques rely on porting 

MPI-all code (which uses MPI exclusively) to the hybrid 

version MPI+OpenMP. The body of the elliptic solver 

consists of five major routines. The main routine advances 

the solution iteratively by calling other major computational 

routines. The elliptic solver invokes the collective 

communication to compute grid global values. The routines 

prforc and divrhs initialize the solver. The prforc evaluates 

the first guess of the updated velocity - combining the explicit 

part of the solution and the estimate of the generalized 

pressure gradient - while imposing the appropriate boundary 

condition. The divrhs evaluates the density weighted 

divergence of that velocity, and thus the initial residual error 

of the elliptic problem for pressure. The most 

computationally intensive routine of the GCR is laplc that 

evaluates iteratively generalized laplacian operator (a 

combination of divergence and gradient) acting on residual 

errors. An important part of the solver is the preconditioner 

precon that accelerates the convergence of the variational 

scheme. By performing direct matrix inversion in the vertical, 

it is especially useful for large-scale simulations on thin 

spherical shells with grids characterized by large anisotropy. 

The routine precon employs sequential Thomas algorithm to 

solve tridiagonal system of equations with the right hand side 

consisting of the horizontal divergence of the generalized 

horizontal gradient, evaluated by nablaCnablaxy, the second 

most computationally intensive routine of the elliptic solver. 

To sum up, the computational loops within the elliptic solver 

can be simply divided, with regard to the data access pattern, 

into three categories: reductions, implicit methods – the 

Thomas algorithm and explicit methods – the stencils. 

B. Parallel Performance 

 

    

  

     

      

  

      

      

  

     

 

To evaluate numerical intensity of the new GPU 

implementation we made use of the standard metric for 

measuring computational performance. The metric is defined 

for each function as the ratio of the number of arithmetic 

operations to the number of required bytes. The number of 

bytes is computed for double precision quantities and takes 

into account both reading and writing operations. The 

constant values are not included in the metric, as they can be 

easily cached by the compiler in the registers. 

Table III shows the computational intensities (CI) of the 

main GCR functions for both CPU and GPU code. We 

compare them with the computational intensity of Kepler 

GPU (http://www.nvidia.com/object/tesla-servers.html) to 

show which hardware resources affect the code efficiency 

more. 
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TABLE III: AVERAGE VALUES PER GRID CELL

precon prforce divrhs laplac GCR

CPU Ops 18 27 15 33 297

Bytes 255 289 170 604 4329

CI 0.07 0.09 0.09 0.05 0.07

Ops 22 27 17 32 291

GPU Bytes 167 154 113 242 2443

CI 0.13 0.17 0.15 0.13 0.13

CI GPU/CPU [%] 185 184 167 239 189
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In the Kepler K20 accelerator the time needed for 

computing 8 double precision operations is equal to the 

read/write time of one byte of data from/to the global 

memory. Thus, all functions in the elliptic solver are bound 

by the global memory bandwidth. Each of them requires 

more than 10 bytes of data to compute one operation. 

Increasing the computational intensity can optimize the 

memory-bound functions. This, in turn, can be achieved by 

both reducing of the memory traffic and increasing the 

number of arithmetic operations. To address this issue we 

analyze the data dependencies between the computational 

loops. Based on the analysis we try to join them to increase 

the computational intensity. The next paragraphs describe 

methodology of optimization which has been applied to the 

selected functions of the elliptic solver. 

C. Preconditioner Optimization 

The preconditioner employs the sequential Thomas 

algorithm [19] to solve tridiagonal systems of equations. 

There are two different implementations of the algorithm that 

depend on the parallelization method or, equivalently on the 

domain decomposition scheme. The standard version is 

dedicated for the 2D horizontal decomposition. For 

implementations that use the 3D domain decomposition, the 

version based on recurrence doubling approach is more 

suitable. The detailed description of the recurrence doubling 

version can be found in [20]. Equation (4) shows the 

structure of the 2D horizontal decomposition 

 

for 3... , 1... , 1...k = l j = mp i = np  

 

        

 

, , 33 , , 1 , , 2 , ,

, ,

f i j k = p i j k f i j k +r i j k

dni i j k

  



 

for 2...1, 1. , 1...k = l j = .mp i = np                  (4) 

 

       , , , , , , 2 , ,p i j k = e i j k p i j k + + f i j k

 
 

where the np and mp values are sub-domain sizes in the 

horizontal direction. The data dependency in both loops 

implies that this decomposition is more suitable for use on a 

single graphic card. The numerical scheme of our 

implementation is shown in (5). 

       202111 f=freg=fsm;f=freg=fsm  

for 3...k = l  

0112 freg=freg;freg=freg  

    

 

0 33 1 ( -2) ( )fsm k = freg = p k f k r k

dni k

  


 

   101 lp=preg;lp=preg                 (5) 

for 2...1k = l   

0112 preg=preg;preg=preg  

     0 2p k = preg = e k preg + fsm k  
 

To minimize the global memory traffic two loops that 

compute the f and p array, have to be joined into one kernel. 

The kernel is a function executed by each thread on the 

vertical column. The computation of the f array is done by 

using registers to eliminate global memory access in the k-2 

direction. The shared memory could be used to cache access 

in the k-2 direction and still the registers would provide lower 

access latency. Next, the f array is saved in the shared 

memory. To compute the p array the f array is read from the 

shared memory and similarly, the usage of registers 

eliminates the k+2 global memory access pattern. Those 

optimizations improved the computational intensity about 

40% from 0.07 to 0.1, mainly by reducing the number of 

required bytes. 

D. Stencil Optimization 

Here we demonstrate the new methodology for stencil 

computation taking as an example the horizontal Laplacian. 

The stencil is a function that independently updates each cell 

in a computational grid. The update is defined by a pattern 

that indicates which neighbors of the cell take part in the 

computation. The horizontal Laplacian contains four 

computation loops defined as the stencils. The stencils have 

access only to one neighboring cell on both sides for the i-th 

and j-th directions, see Fig. 4a for details. In particular 

situations when the required data on domain boundaries are 

not available, the boundaries have to be handled specifically. 

We joined all computational loops into one kernel to improve 

the computational intensity, see Fig. 4b. 
 

                        
a)                                b) 

Fig. 4. a) Two stencils computing px (partial derivative of p in x direction) 

and r (partial derivative of px in x direction) in the i-th direction. The same 

applies to j-th direction. b) The stencil pattern in the i-th and j-th directions 

after transformation.  

 

This transformation creates a larger stencil with the new 

access pattern. In this new pattern each cell accesses a distant 

neighbor that is one cell away from the currently updated 

position. The distant neighbors, similarly to stencils before 

transformation, have to be accessed on both sides for the i-th 

and j-th directions. We use 2.5 D spatial blocking technique 

proposed in [16] to efficiently cache the neighbor cells in the 

shared memory and reduce the global memory traffic. That is, 

we read the horizontal sub-planes, defined by the i-th and j-th 

directions, to shared memory and iterate through the k-th 

direction. The additional data, called margin, is read to the 

shared memory in order to compute properly cells on the 

sub-plane boundaries. Thus, some cells are read more than 

once and their number depends on the sub-plane dimensions. 

These dimensions are mainly constrained by the size of the 

shared memory. We minimize the number of the global 

memory transactions by changing the dimensions of the 

sub-planes. The memory transactions are defined at the 



  

granularity of cache lines. The sub-plane dimensions that are 

close in shape to square limit the margin size. On the other 

hand the sub-plane dimensions have influence on the number 

of so-called coalesced memory transactions. The coalesced 

memory transactions define cache lines fully loaded with 

useful data. The higher size of the sub-plane dimension on 

the longest direction, in which following cells are placed in 

consecutive memory addresses, the larger number of the 

coalesced memory transactions. Therefore, we try to find the 

sub-plane dimensions that optimize both goals. All described 

optimizations improved the computational intensity from 

0.06 to 0.22 and reduced the number of moved bytes to/from 

global memory per cell by a half. 

E. Computational Intensity of the New Implementation 

Parallel performance of the new GPU-implementation 

have been tested using dual socket Intel Xeon E5-2670 CPU 

with 16 cores clocked at 2.6 GHz and Kepler K20 GPU. To 

compare the performance of CPU and GPU processors solely, 

the data transfer time between RAM and GPU is not included 

in case of the GPU timings. It is reasonable to assume that all 

data are available on the global memory as we transfer the 

full data set to CPU after every one hundred time steps. 

 

 

TABLE IV: PERFORMANCE RESULTS – TEST 1 

Test 1 

n × m × l 
CPU - 16 cores GPU 

Speedup 
[ms] [GFLOPS] [ms] [GFLOPS] 

16 × 16 × 16 0.4 2.31 3 0.28 0.13 

32 × 32 × 32 1.2 6.15 3.6 1.86 0.33 

64 × 64 × 64 11.6 5.09 7.3 7.34 1.59 

128 × 128 × 128 113 4.18 36.5 11.75 3.10 

256 × 256 × 256 902 4.19 264 12.99 3.42 

512 × 256 × 256 1741 4.34 506 13.56 3.44 

 

TABLE V: PERFORMANCE RESULTS – TEST 2 

Test 2 

n × m × l 
CPU - 16 cores GPU 

Speedup 
[ms] [GFLOPS] [ms] [GFLOPS] 

64×32×16 2.6 10.07 14 2.12 0.19 

128×64×32 23.5 8.92 28 8.46 0.84 

256×128×64 382.3 4.38 136 13.94 2.81 

512×256×128 3016.5 4.32 967 15.69 3.21 

1024×256×128 6053.4 4.43 1871 16.21 3.24 

 
 

Table IV and Table V show the performance of the CPU 

and GPU implementations obtained in two different 

numerical tests.  

The test 1 refers to the flow in a cube with triply periodic 

boundaries. The test 2 is a simulation of the flow on a sphere 

with non-periodic boundaries in the vertical. Additionally, 

the test 2 utilizes the preconditioner in the horizontal 

direction. Both tests were conducted with only one GCR 

iteration. It turned out that, the GPU implementation is about 

3 times faster than the CPU implementation. The speedup 

grows with the increase of domain sizes as the kernels utilize 

GPU resources more efficiently. The GPU code achieves 

72% of the peak performance for the test 1 and up to 86% for 

the test 2. The peak performance is defined as the product of 

the measured global memory bandwidth and the 

computational intensity. The measured global memory 

bandwidth for Kepler K20 is 144GB/s. The peak 

performance corresponds to the ideal situation in which data 

transfer and computations perfectly overlap. This occurs only 

if there are no memory latency effects and when the 

bandwidth of the global memory is completely saturated. 

 

V. 3D INCOMPRESSIBLE TURBULENT FLOW; VALIDATION 

TEST CASE 

The new GPU implementation of the GCR solver is 

validated using a standard benchmark test case for 

incompressible flow solvers. We simulate decaying 

turbulence of a homogeneous incompressible fluid. Here, 

only simplified setup proposed by Taylor and Green [21] is 

considered. This problem was originally used to illustrate 

processes of grinding down of large eddies into smaller ones. 

The initial conditions for the velocity are slightly modified 

compared to the original work [21], namely 

sin( )cos( )cos( )

cos( )sin( )cos( )

sin( )cos) )

u = ax by cz

v = ax by cz

w= ax by

                   (6) 

where a = 2/(n−1)dx, b = 2/(m−1)dy, c = 2/(k −1)dz. Here, m, 

n and k are integers whereas dx, dy and dz are grid spacings in 

all three directions. Our computational domain is a 

triply-periodic cube of length 2. Grid points are uniformly 

distributed in each spatial direction. The size of the 

computational grid is 1283. There is no external forcing so the 

flow is driven by the turbulent energy cascade. We compare 

results from simulations performed with two complete 

versions of EULAG. 

The first simulation has been performed using the 

traditional CPU architecture and the standard version of 

EULAG. To perform the second simulation we used the new 

GPU implementation of the GCR solver and graphic card 

NVIDIA Kepler K20. 

First, we compare 2D velocity flow field obtained in both 
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simulations. Fig. 5 shows the vertical component of velocity 

in the bottom horizontal plane. There is good agreement 

between solutions computed with the standard version of 

EULAG and the new GPU implementation. The black and 

red lines precisely overlap. 

To compare the results from simulations in the entire 

domain the three-dimensional visualization of the vorticity 

flow field has been prepared. The results are shown in Fig. 6. 

Again, we confirm the perfect agreement between 

simulations performed on two different hardware platforms. 

 

 

 

 
Fig. 5. Time evolution of the vertical component of velocity, displayed in the 

bottom (z = -) horizontal cross section through the domain. Black lines 

correspond to simulations with standard CPU version of EULAG. Red 

contours represent solution from the new GPU-implementation. The dashed 

lines indicate negative values. 

 

CPU            GPU 

T=200dt 

          
 

T=400dt 

      
Fig. 6. Isosurfaces of vorticity magnitude from simulation at grid 1283. On 

the left side are results from simulations performed with the traditional (CPU) 

version of EULAG. On the right side are results from the new GPU 

implementation. The top panels present the flow after 200 time steps. The 

two bottom panels show the vorticity field after 400 time steps. 

 

VI. CONCLUSION 

In this paper, we reported on our efforts in adapting 

multiscale model EULAG to modern GPU-based 

architectures. Two main modules of EULAG, namely 

advection algorithm MPDATA and iterative elliptic pressure 

solver GCR have been redesigned and the new organization 

of computations has been implemented. The new 

implementation performs better than the conventional code, 

and can take full advantage of modern heterogeneous 

architectures. The scalability tests were performed using two 

different graphic cards. It was found that the speedup grows 

with the domain size as the kernels can utilize GPU resources 

more efficiently.  

Porting the multiscale model EULAG to modern 

architectures opens bright perspectives for further progress in 

fundamental research and in applied fields that are closely 

related to computational fluid dynamics. It is expected that 

improved performance will allow reproducing more 

faithfully meteorological processes occurring in the real 

atmosphere. The new development allows performing 

simulations in a larger domain and thereby extends the range 

of scales what in turn may results in a more reliable 

operational weather forecast.  
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