
  

 

Abstract—This paper investigates the Dufour and Soret 

effects on unsteady MHD free convection flow past a 

semi-infinite moving vertical plate in a porous medium 

considering the viscous dissipation effects. The resulting 

governing equations are transformed into non linear ordinary 

differential equations using similarity transformation. The set 

of non linear ordinary differential equations are first linearized 

by using Quasi-linearization technique and then solved 

numerically by using implicit finite difference scheme. Then the 

system of algebraic equations is solved by using Gauss-Seidal 

iterative method. The solution is found to be mainly dependent 

on six governing parameters including the magnetic field 

parameter M, the suction parameter v0, Soret number Sr, 

Dufour number Du, Eckert number Ec, and Darcian parameter 

Da. Numerical results are tabulated for the local Nusselt 

number and Sherwood number. Velocity, Temperature and 

Concentration profiles drawn for different controlling 

parameters reveal the tendency of the solution. 

 

Index Terms—Magnetic field effects, Soret and Dufour 

effects, suction, viscous dissipation. 

 

I. INTRODUCTION 

Combined heat and mass transfer (or double-diffusion) in 

fluid-saturated porous media finds applications in a variety of 

engineering processes such as heat exchanger devices, 

petroleum reservoirs, chemical catalytic reactors and 

processes, geothermal and geophysical engineering moisture 

migration in a fibrous insulation and nuclear waste disposal 

and others. Double diffusive flow is driven by buoyancy due 

to temperature and concentration gradients. Bejan and Khair 

[1] investigated the free convection boundary layer flow in a 

porous medium owing to combined heat and mass transfer. 

Magneto hydrodynamic flows have applications in 

meteorology, solar physics, cosmic fluid dynamics, 

astrophysics, geophysics and in the motion of earth‟s core. In 

addition from the technological point of view, MHD free 

convection flows have significant applications in the field of 

stellar and planetary magnetospheres, aeronautical plasma 

flows, chemical engineering and electronics. 

Raptis [2] studied mathematically the case of time varying 

two dimensional natural convective flow of an 

incompressible, electrically conducting fluid along an infinite 

vertical porous plate embedded in a porous medium. 

Elabashbeshy [3] studied heat and mass transfer along a 

vertical plate in the presence of magnetic field. Chamkha and 
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Khaled [4] investigated the problem of coupled heat and mass 

transfer by magneto hydrodynamic free convection from an 

inclined plate in the presence of internal heat generation or 

absorption. 

In the combined heat and mass transfer processes, it is 

known that the thermal energy flux resulting from 

concentration gradients is referred to as the Dufour or 

diffusion–thermal effect. Similarly, the Soretor 

thermo-diffusion effect is the contribution to the mass fluxes 

due to temperature gradients. The Dufour and Soret effects 

may be significant in the areas of geosciences and chemical 

engineering. Kafoussias and Williams [5] employed the finite 

difference method to examine the Dufour and Soret effects on 

mixed free-forced convective heat and mass transfer along a 

vertical surface, various other influences that have been 

considered include magnetic field [6], variable suction [7] 

and chemical reaction [8]. 

Various other aspects dealing with the Soret effect on the 

combined heat and mass transfer problems have been also 

studied. For example, Joly et al. [9] used the 

brinkman-extended Darcy model to examine the effect of the 

soret effect on the onset of convective instability. Mojtabi et 

al. [10] presented, making use of as pseudo-spectral 

chebyshev collocation method, a stability analysis of the 

influence of vibration on Soret-driven convection in porous 

media. Bourich et al. [11] carried out an analytical and 

numerical study of the onset of soret convection in a 

horizontal porous layer subjected to a uniform vertical 

magnetic field.   

However in the existing convective heat transfer literature 

on the non-Newtonian fluids, the effect of the viscous 

dissipation has been generally disregarded. Gnaneswara and 

Bhasker Reddy [12] have studied the effects of soret and 

dufour on steady MHD free convection flow in a porous 

medium with viscous dissipation. Kishan and Shashidar 

Reddy [13] have studied the MHD effects on non-Newtonian 

power-law fluid past a continuously moving porous flat plate 

with heat flux and Viscous Dissipation. Recently Alamet al. 

[14] has studied Dufour and Soret effects on unsteady MHD 

free convection and Mass transfer flow past a vertical porous 

plate in a porous medium. The present work aims to study the 

effects of Dufour and Soret on unsteady free convection and 

mass transfer flow past an infinite vertical porous flat plate in 

porous medium by taking into account the effect of viscous 

dissipation. 

 

II. MATHEMATICAL ANALYSIS 

An unsteady two-dimensional flow of an incompressible 
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and electrically conducting viscous fluid, along an infinite 

vertical porous flat plate embedded in a porous medium is 

considered. The x-axis is taken along the infinite plate, and 

parallel to the free-stream velocity which is vertical and the 

y-axis is taken normal to the plate. A magnetic field B0 of 

uniform strength is applied transversely to the direction of the 

flow. 

Initially the plate and the fluid are at same temperature T∞ 

in a stationary condition with concentration level C∞ at all 

points. For t >0, the plate starts moving impulsively in its 

own plane with a velocity U0, its 

Temperature is raised to Tω and the concentration level at 

the plate is raised to Cω. The fluid is assumed to have constant 

properties except that the influence of the density variations 

with temperature and concentration, which are considered 

only in the body force term. Under the above assumptions, 

the physical variables are functions of y and t only. Assuming 

that the Boussinesq and boundary-layer approximation hold 

and using the Darcy-Forchheimer model, the basic equations, 

which govern the problem, are given by Alam and Rahman 

[8]: 
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Initially (t=0) the fluid and the plate are at rest. Thus the no 

slip boundary conditions at the surface of the plate for the 

above problem for t >0 are: 

 

u=U0,  v=v(t),   T=Tw,,   C=Cwat  y=0                (5a) 

 

u=0,      T=T∞,   C=C ∞,  as y∞            (5b) 

 

The last but one term on the right-hand side of the energy 

equation (3) and concentration equation (4) signifies the 

Dufour or diffusion-thermo effect and the Soretor 

thermal-diffusion effect, respectively. 

Here u, v are the Darcian velocity components in the x- and 

y-directions respectively, t is the time, ν is the kinematic 

viscosity, g is the acceleration due to gravity, ρ is the density, 

β is the coefficient of volume expansion, β* is the volumetric 

coefficient of expansion with concentration, k is Darcy 

permeability, b is the empirical constant, B0 is magnetic 

induction, T and T∞ are the temperature of the fluid inside the 

thermal boundary layer and the fluid temperature in the free 

stream, respectively, while C and C∞ are the corresponding 

concentrations. Also ,σ is the electric conductivity, α is the 

thermal diffusivity, Dm is the coefficient of mass diffusivity, 

cp is the specific heat at constant pressure, Tm is the mean 

fluid temperature, KT is the thermal diffusion ratio and cs is 

the concentration susceptibility. 

III. METHOD OF SOLUTION 

Now in order to obtain a local similarity solution (in time) 

of the problem under consideration, we introduce a time 

dependent length scale δ as 

 

δ=δ(t).                                (6) 

 

In terms of this length scale, a convenient solution of the 

equation (1) is considered to be in the following form: 

 

V=v(t) = -𝑣0
𝝂

𝜹
,                          (7) 

 

where 𝑣0>0 is the suction parameter. 

We now introduce the following dimensionless variables: 

 

η =
𝑦

𝛿
 , 

 

𝑢 = 𝑢0𝑓 𝜂 ,                                          
 

𝜃 𝜂 =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
,                                (8) 

 

𝜑 𝜂 =
𝐶 − 𝐶∞
𝐶𝑤 − 𝐶∞

, 

 

Then introducing the relations (6)-(8) into the equations 

(2)-(3) respectively, we obtain (by using the analysis of Sattar 

and Hossain [9] and Hasimoto [10]), the following 

dimensionless ordinary differential equations: 

 

𝑓 ′′ +  2𝜂 + 𝑣0 𝑓
′ + 𝐺𝑟𝜃 + 𝐺𝑚𝜑 −𝑀𝑓 −

1

𝐷𝑎
𝑓 −

𝑅𝑒𝐹𝑠

𝐷𝑎
𝑓2 = 0  (9) 

 

𝜃′′ +𝑝𝑟 2𝜂 + 𝑣0 𝜃
′ + 𝑝𝑟𝐷𝑢𝜑

′′ + 𝑝𝑟𝐸𝑐(𝑓 ′′ )2 = 0               

    (10) 

 

𝜑′′ + 𝑆𝑐(2𝜂 + 𝑣0)𝜑′+𝑆𝑐𝑆𝑟𝜃
′′ = 0                           (11) 

 

where primes denotes differentiation with respect to η and the 

dimensionless quantities are given by Da =
𝑘

𝛿2  is the local 

Darcy number, Fs =
𝑏

𝛿
 is local Forchheimer number, Re =

𝑈0𝛿

𝜈
is 

the local Reynolds number, Pr =
𝜈

𝛼
 is the Prandtl number,  

Sc =
𝜈

𝐷𝑚
 is the Schmidt number, M =

𝜎𝐵0
2𝛿2

𝜈𝜌
 is the magnetic field 

parameter, Sr =
𝐷𝑚𝐾𝑇(𝑇𝑤−𝑇∞ )

𝑇𝑚 𝜈(𝐶𝑤−𝐶∞ )
 is the Soret number,  

D =
𝐷𝑚𝐾𝑇(𝐶𝑤−𝐶∞ )

𝑐𝑠𝑐𝑝𝜈(𝑇𝑤−𝑇∞ )
  is the Dofour number, Gr = 

𝑔𝛽 (𝑇𝑤−𝑇∞ )𝛿2

𝜈𝑈0
  is 

the local Grashof number and Gm = 
𝑔𝛽∗(𝐶𝑤−𝐶∞ )𝛿2

𝜈𝑈0
 is the local 

modified Grashof number. 

The corresponding boundary conditions for t >0 are 

obtained as 

 

f =1, θ =1,  φ =1,  at η =0                       (12a) 

f =0, θ =0,  φ =0,  as η∞              (12b)      

 

The equations (9)-(11) are locally similar in time but not 

explicitly time dependent.  

International Journal of Applied Physics and Mathematics, Vol. 4, No. 2, March 2014

131



  

To solve the system of transformed governing equations (9) 

& (11) with the boundary conditions (12), we first linearized 

equation (9) by using Quasi linearization technique.  

Then equation (9) is transformed to  

 

𝑓 ′′ +  2𝜂 + 𝑣0 𝑓
′ + 𝐺𝑟𝜃 + 𝐺𝑚𝜑 −𝑀𝑓 −

1

𝐷𝑎
𝑓 −

𝑅𝑒𝐹𝑠

𝐷𝑎
 2𝐹𝑓 − 𝐹2 = 0 (13) 

 

where F is assumed to be a known function and the above 

equation can be rewritten as  
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Equation (10) can be expressed as   

 

0210  CCC                     (15) 

 

where 
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And Equation (11) can be expressed as  

 

0210  EEE 
                           (16) 

 

where 

 

1][0 iE )2(][ 01   CSiE
, 

  rC SSiE ][2  

 

Using implicit finite difference formulae, the equations 

(14), (15) & (16) are transformed to   

 

B0[i]f[i+1] + B1[i]f[i] + B2[i]f [i-1] + B3[i]= 0    (17) 

 

where 

B0[i] = 2A0[i] + hA1[i], 

B1[i] = -4A0[i] – h A1[i] + 2h2A2[i] , B2[i] = 2A0[i], 

 

B3[i] = 2h2A3[i]. 

 

D0[i]θ[i+1] + D1[i] θ[i] + D2[i] θ[i-1] + D3[i] = 0   (18) 

where 

D0[i] = 2C0[i] + h C1[i],D1[i] = -4C0[i], 

 

D2[i] = 2C0[i] – h C1[i],D3[i] = 2h2C2[i] 

and 

 

H0[i]φ[i+1] + H1[i]φ[i] + H2[i]φ[i-1] + H3[i] = 0     (19) 

where 

H0[i] = 2E0[i] + hE1[i], H1[i] = - 4 E0[i] 

 

H2[i] = 2E0[i] – h E1[i], H3[i] = 2h2 E2[i] 

 

where „h‟ represents the mesh size in   direction. Equation 

(17), (18) and (19) are solved under the boundary conditions 

(12) by Thomas algorithm for various parameters entering 

into the problem and computations were carried out by using 

C programming.  

Knowing the concentration field, the rate of mass transfer 

coefficient can be obtained which in the non-dimensional 

form in terms of Sherwood number is given by  

 

Sh = − 
𝜕𝐶

𝜕𝑦
 
𝑦=0

 

 

Knowing the temperature field, the rate of heat coefficient 

can be obtained which in the non-dimensional form in terms 

of the Nusselt number is given by Nu = − 
𝜕𝜃

𝜕𝑦
 
𝑦=0

 

 

IV. RESULTS AND DISCUSSIONS 

A Parametric study is performed to explore the effect of 

suction parameter, on the velocity, Soret and Dufour numbers 

temperature and concentration profiles. The numerical 

computations have been done for different value of  V0, Sr, D 

and for fixed values of Pr, Sc, Gr, Gm, Re and Fs. The values of 

Sr and D are taken in such a way that their product should be a 

constant provided the mean temperature is also constant. The 

value of Prandtlnumber is chosen as 0.71 which corresponds 

to air and the value of Schmidt number is chosen to represent 

hydrogen at 250c and 1 atm. The values of Grash of numbers 

are taken to represent the free convection problem as Gr = 12 

Re = 100 and local For chheimernumber is chosen as Fs = 

0.09.  
 

TABLE I: THE VALUES OF NUSSELT NUMBER AND SHERWOOD NUMBER 

FOR DIFFERENT VALUES OF SR AND DU 

Sr Du Nu Sh 

2.0 0.03 1.121243 1.102232 

1.0 0.06 1.009123 1.312547 

0.5 0.12 0.921737 1.810015 

0.4 0.15 0.885147 1.904895 

0.2 0.30 0.863917 1.942347 

 

The values of Nusselt number and the Sherwood number 

which are directly proportional to −𝜃′  (0) and−∅′(0) are 

calculated and presented in the above tabular form for various 

values of Sr, Du. It is evident  from the table that as Sr 
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decreases there is an increase in Sherwood number but 

decrease in Nusselt number. 
 

 
Fig. 1. Velocity profile for different values of v for Sr = 2.0, D = 0.03, Da 

=0.5 and M =0.3. 

 

 
Fig. 2. Temperature Profile for different values of v for Sr = 2.0, D = 0.03, Da 

=0.5 and M =0.3. 

 

The effect of suction parameter on the velocity profiles in 

shown in Fig. 1. It is noticed from the figure that increase in 

the suction parameter decreases the velocity which indicates 

that suction stabilizes the growth in the boundary layer. Fig. 2 

shows the effect of suction parameter on the temperature 

profiles, from which it is evident that the temperature 

decreases as there is an increase in suction parameter.  
 

 
Fig. 3. Concentration Profile for different values of v for Sr = 2.0, D = 0.03, 

Da =0.5 and M =0.3. 

 

The influence of suction parameter on concentration 

profiles is displayed i Fig. 3. It is observed from the figure 

that the concentration decreases with an increase in suction 

parameter away from the wall where as a reverse 

phenomenon is seen near the wall, i.e. the concentration 

increases with the increase in suction parameter very near to 

the wall. Hence suction reduces the growth of the thermal and 

concentration boundary layers. 
 

 
Fig. 4. Velocity Profile for different values of D, Sr for v = 0.5, Da =0.5 and 

M =0.3. 

 

 
Fig. 5. Temperature  Profile for different values of D, Sr for V 0 = 0.5, Da 

=0.5 and M =0.3. 

 

The effects of Soret and Dufou rnumbers on velocity 

profiles and temperature profiles are shown in Fig. 4 and Fig. 

5 respectively. As there is a decrease in the Soret number or 

an increase in the Dufour number, the velocity and 

temperature decreases. Here the variation in the profiles is 

very low.  

 

 
Fig. 6. Concentration Profile for different values of D, Sr for v = 0.5, Da =0.5 

and M =0.3. 

 

The variation in concentration profiles with the change in 

soret and dufour number is displayed in Fig. 6. The 

concentration increases as there is an increase in 

Dufournumber or decrease in Soretnumber. The viscous 

dissipation effect is to decelerate the temperature profiles. 
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Fig. 7. Velocity Profile for different values of M for v = 0.5, D =0.03, Da = 

0.5 and Sr =2.0. 

 

 
Fig. 8. Velocity Profile for different values of Da for v = 0.5, M=0.3, D =0.03 

and Sr =2.0. 

 

The effect of magnetic field on the velocity profiles is 

shown in Fig. 7. It is evident from the figure that the increase 

in the magnetic field parameter decreases the velocity 

profiles. The effect of magnetic field is to decrease the 

velocity. The variation in velocity profiles with the change in 

Darcy parameter is shown in figure 8. It is noticed from the 

figure that the velocity increases with the increase in Darcy 

parameter.  

 

V. CONCLUSIONS 

1) Suction reduces the growth of the hydrodynamic, 

thermal and concentration boundary layers. 

2) The increase in the Dufour number or decrease in the 

Soret number decreases the velocity and temperature 

profiles whereas increases the concentration. 

3) Viscous Dissipation decelerates the temperature. 

4) Magnetic field retards the motion of the fluid whereas 

Darcy number accelerates the velocity. 
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