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Abstract—Lubich convolution quadrature formulas have the 

fundamental property of not using explicitly the expression of 

the kernel of the integral equation they are applied to, which is 

instead replaced by that of its Laplace transform, usually given 

by a simple analytic function. In this paper, the Lubich- 

collocation procedure was successfully employed to reduce a 

system of nonlinear Volterra integral equations with 

convolution kernels to a system of algebraic equations. An 

example is considered to illustrate the ability of the proposed 

method. 

 

Index Terms—Nonlinear integral equation, Convolution 

kernel, Lubich quadrature. 

 

I. INTRODUCTION 

Many physical, chemical, and biological problems are 

modeled as Volterra integral equations (VIEs), such as heat 

conduction problem, concrete problem of mechanics or 

physics, on the unsteady poiseuille flow in a pipe, diffusion 

problems, electroelastic, contact problems, etc [1]. We 

consider the system of nonlinear volterra integral equations 

of the form 

0
1 1

( ) ( ) ( ) ( ) ( , ( )) ,
M M

x

ij j i ij ij j

j j

q x f x g x k x t t f t dt
 

          (1) 

for 1,2,...,i M where (0, ),x b the functions , ,
ij i ij

q g k  

and 
ij

 are known and 
i

f to be determined.. 

In the last years, several authors have used Lubich 

convolution quadrature formulas to discretize space-time 

boundary integral equations representing time dependent 

problems. Lubich convolution quadrature methods were 

proposed, implemented and analyzed by Christian Lubich in 

[1], [2]. From the beginning, a main motivation for 

considering these methods was that they enjoy excellent 

stability properties when used for the discretization of 

integral equations or integro-differential equations of 

convolution type, in a way often strikingly opposed to 

standard quadrature formulas using values of the convolution 

kernel or product integration formulas using moments of the 

convolution kernel over short intervals [3]. The stability 

aspect of convolution quadrature methods was emphasized in 

[4] for Abel-Volterra integral equations, for a large class of 

nonlinear convolution equations in [5]. 

The plan of the paper is as follows. In Section II, the 

Lubich convolution quadrature is summarized. In Section III, 
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II. LUBICH CONVOLUTION QUADRATURE 

A convolution integral of the form  

                          
0

,
t

f t k t g d                              (2) 

can be approximated by the operational quadrature method 

developed by Lubich [1], [2]. 

Assumes that the function ( )k t is such that its Laplace 

transform ( )K s is sectorial, i.e. it is analytic in the sector 

arg( ) ,s c     with 
2


  , c  , and 

( )K s M s


 ,  

for some real   and M . 

Substituting ( )k t by the inverse Laplace transformation of 

( )K s in the convolution integral (2) and reversing the order 

of integration leads to 

         
1

lim ( ) ( ; ) ,
2

c iR

c iRR
f t K s y t s ds

i




 

                         (3) 

where ( )

0
( ; ) ( ) .

t
s ty t s e g d    Setting ( ) ( ; ),y t y t s this 

function is the solution of the initial value problem 

, (0) 0.y sy g y                     (4) 

Therefore, ( )y t can be approximated by applying a linear 

multistep method 

0 0

( ) ( (( ) )),
l l

j n j j n j

j j

y t y h sy g n j h
 

 

             (5) 

with equal time steps h  and the starting values 

1
... 0.

l
y y

 
   Taking a representation with formal 

power series for 
0

( ) n

n

n

y z y z




  and 
0

( ) ( ) ,n

n

g z g nh z




  

the multistep method becomes 

0 0

( )
( ) ( ) ,n n

n

n n

z
s y z g nh z

h

 

 

  


       (6) 

where 

0 1
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...
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...
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we use this quadrature method to replace the integral 

equations (1) by a system of nonlinear algebraic equations.

Finally, in Section V, we give some numerical results.
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The used multistep method should be ( )A  stable with 

   stable in a neighborhood of infinity, strongly 

zero-stable and consistent of order p . Well-known examples 

of possible generating polynomials are the backward 

differentiation formulas of order p=1, 2, …, 6, given by 

1

1
( ) (1 ) .

p
i

i

z z
i




   

Using Cauchy’s integral formula, the resulting 

approximation of (1) is 

0 0

( )
( ) ( )n n

n

n n

z
f z K g nh z

h

 

 

 
                    (7) 

Representing the function ( )K s by a power series 

0

( )
( ) ( ) ,n

n

n

z
K h z

h








                     (8) 

with the coefficients 

11 ( )
( ) ( ) ,

2

n

n z

z
h K z dz

i h

 


  





                    (9) 

and   being the radius of a circle in the domain of 

analyticity of ( ),K s (7) can be simplified by Cauchy’s 

product of two series 

0 0 0 0

( ) ( ) ( ) ( ) .
n

n n n

n n j

n n n j

h z g nh z h g jh z
  



   

          (10) 

Taking now the n-th coefficient of the power series (10), 

the quadrature formula reads 

0

( ) ( ) ( ) ,
n

n

n n j

j

f nh f h g jh z




              (11) 

for n=0, 1, .., N, where the integration weights 
n

  are 

determined by (9). By introducing the polar coordinate 

,iz e  we have the following integral representation for 

these coefficients 

2

0

( )
( ) ( ) .

2

n i

in

n

e
h K e d

h



 



  

 


                   (12) 

This integral can be efficiently computed by using the 

trapezoidal rule, that is, 

2
1

2

0

( )
( ) ( ) ,

il
n LL

inl
L

n
l

e
h K e

L h

 




 


  
            (13) 

where the interval (0, 2 )  has been partitioned into L  

subintervals of equal length. Once the weights ( )
n

h and the 

required values of g  are computed, the discrete convolution 

(11) can be evaluated in ( log )O N N arithmetical operations, 

using FFT . 

Theorem 1. Let f  be defined as (2) where ( )K s is 

sectorial and the chosen multistep method is ( )A  stable of 

order ,p  then  

1( ) ,p p

n n n
f f t C t h    

where the constant C  does not depend on h  and
n

t . 

Proof. [1] To have the maximum convergence order p , 

Lubich in [1] has suggested to modify the quadrature rule as 

follows 
2

0

( ) ( ),
p

n n j n j

j

f f c h g jh






               (14) 

where 
j

c  , 0,..., 2j p  ,  are the correction weights of the 

p-th order Newton- Gregory formula (end-point correction of 

the trapezoidal rule). 

Theorem 2. Under the assumptions of Theorem 1, and for 

[0, )pg C  , the method (14) satisfies 

( ) ,p

n n
f f t C h   

where the constant C   does not depend on h  and 
n

t . 

 

III. COLLOCATION METHOD 

Consider the integral equations (1) for 1,2,..., ,i M let 

Laplace transform of ( )
ij

k x are ( ),
ij

K s and assume that 

( ), , 1,2,..., ,
ij

K s i j M are sectorial.  

Define 
n

x nh  where 
b

h
N

 , by using the modified 

quadratare formula (14), we may write  

( )

0
0

2
( ) ( )

0

( ) ( , ( )) ( ) ( , ( ))

( ) ( , ( )) ( ),

n

n
x

ij

ij ij j n k ij k j k

k

p
ij ij p

k n k ij k j k
k

k x t t f t dt h x f x

c h x f x O h










   

  









 (15) 

for , 1,2,..., ,i j M and 1,2,..., ,n N where 

( )

0

( )
( ) ( ) .ij n

ij n

n

z
K h z

h








  

At 
n

x x , for 1,..., ,n N  we have, on substituting (15) 

in (1), 

( )

1 1 0

2
( ) ( )

0

( ) ( ) ( ) ( ) ( , ( ))

( ) ( , ( )) ( ).

M M n
ij

ij n j n i n n k ij k j k

j j k

p
ij ij p

k n k ij k j k

k

q x f x g x h x f x

c h x f x O h







  








  




  



  



 

So, the corresponding approximating equations are 



( )

1 1 0

2
( ) ( )

0

( ) ( ) ( ) ( , )

( ) ( , ) ,

M M n
ij

ij n jn i n n k ij k jk

j j k

p
ij ij

k n k ij k jk

k

q x f g x h x f

c h x f



  








  



 

  







      (16) 

for 1,2,..., ,i M and 1,2,..., .n N  

Equations (16) determine a system of NM nonlinear 

algebraic equations to be solved for NM unknown 

coefficients , 1,..., , 1,..., .
jn

f j M n N   

 

IV. APPLICATIONS IN PHYSICS  

Parabolic partial differential equations with nonlinear 
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boundary conditions appear in several branches of applied 

physics and engineering (cf. [6] and the references therein). 

For example, consider the heat conduction in a rod of length l 

along which heat may be dissipated. At one end of the rod 

energy is absorbed at a given rate and radiates nonlinearly 

according to Boltzmann' law while at the other end the energy 

radiates linearly or the temperature is kept at the same level as 

the surrounding temperature. Based on the balance relation of 

the heat conduction, the temperature w in the rod is governed 

by the one dimensional parabolic problem [6] 

2

02
( ) ( , ),

w w
D C w q x t

t x

 
   

 
                    (17) 

0
( ,0) ( ),w x w x                                          (18) 

0
(0, ) ( (0, ) ) ( ),m m

x
w t w t h t                         (19) 

0 0 0
( , ) ( ( , ) ) 0,

x
w l t w l t                            (20) 

where 0 , 0 , ,x l t T D C    and  are positive 

constants, 
,q h

and 0
w

 are smooth nonnegative functions 

representing the internal, boundary and initial source, 

respectively, and 0
0 

 denotes energy dissipation along the 

rod and 0
( (0, ) )m mw t 

 is due to the effect of nonlinear 

radiation. 

Also, in many biochemical reaction processes such as 

fermentation, waste treatment, and production of 

pharmaceutical, the reaction rate of the concentration as often 

assumed to obey the Michaelis-Menton hypothesis. When 

this reaction appears at the boundary surface of the diffusion 

medium it leads to a nonlinear boundary condition. A simple 

model of the fermentation problem is given in the form 

(17)-(20) except with and with the 
0

0   boundary 

condition at 0x   replaced by 

(0, )
(0, ) ,

1 (0, )
x

w t
w t

a w t
 




                       (21) 

where   and a  are positive constants.  

Moreover, in the reaction diffusion process where gas is in 

contact with liquid the gas is absorbed by the liquid at the 

gad-liquid interface. If the diffusion medium is a slab and the 

interfacial absorption occurs at the slab face 0x   then the 

one-dimensional mathematical model for the liquid density 

w is given by (17)-(20) with 
0

0C   and with the 

boundary condition at 0x   replaced by 

(0, ) ( (0, ) (0, )),
x

w t w t w t                  (22) 

where   and   are positive constants. 

Generally, consider the problem of determination of the 

function w in the following parabolic problem 

2

1 2 32
( , ),

w w w
p p w p x t

t x t

  
   

  
                  (23) 

0
( ,0) ( ),w x w x                                          (24) 

0
(0, ) ( , (0, )),

x
w t f t w t                             (25) 

1
(1, ) ( , (1, )),

x
w t f t w t                              (26) 

where 
1

p and 
2

p  are constants and 
3 0 0
, ,p w f and 

1
f are 

known functions. 

Employing the transformation  

2

1 1

2
( , ) ( , )exp{ ( ) },

2 4

p p
u x t w x t x p t    

the problem (23)-(26) will become [7] 

2

2
( , ),

u u
q x t

t x

 
 

 
                                (27) 

0
( ,0) ( ),u x u x                                        (28) 

0
(0, ) ( , (0, )),

x
u t g t w t                               (29) 

1
(1, ) ( , (1, )).

x
u t g t w t                                 (30) 

Consider the problem (27)-(30) and assume that the source 

function ( , )q x t  is bounded and uniformly Holder 

continuous on each compact subset of the domain. We shall 

also assume that the initial function 
0

u is 

piecewise-continuous, 
0

g  and 
1

g are Lipschitz- continuous 

with respect tou . So, the bounded unique solution u of the 

problem is the form [7] 

00

10

( , ) ( , ) 2 ( , ) ( , ( ))

2 ( 1, ) ( , ( )),

t

t

u x t v x t x t g

x t g

  

  





    

    
       (31) 

where   and   are piecewise-continuous solutions of the 

following system of integral equations 

00
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( ) (0, ) 2 (0, ) ( , ( ))

2 (1, ) ( , ( )) ,

t

t

t v t t g d

t g d
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 





      

     
        (32) 

00

10

( ) (1, ) 2 (1, ) ( , ( ))

2 (0, ) ( , ( )) ,

t

t

t v t t g d

t g d

  

 





      

     
         (33) 

1

00

1

0 0

( , ) ( , , ,0) ( )

( , , , ) ( , ) ,
t

v x t G x t u d

G x t q d d

  
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





 
 

( , , , ) ( , ) ( , ),G x t x t x t              

and 

21 ( 2 )
( , ) exp{ }.

42 n

x n
x t

tt









   

Thus, the problem (27)-(30) is reduced to (31)-(33). So, by 

solving the system of nonlinear Volterra integral equations 

(32) and (33), we obtain ( )t  and ( )t , then, if we replace 

them in (31), we will have the solution ( , )u x t .  



  

V. NUMERICAL RESULTS  

In this section, we illustrate the use of the proposed method 

by displaying the results obtained from its application to a 

test problem.  

Example 1. Consider the system of integral equations (1) 

with 
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g ( ) 0.25 (-7-e + 2x + 2x +4(-2+ x + x +x )cosx 
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



 sinx+2sinhx)

 

 

with the exact solution 

1

2

( ) ,

( ) sin .

f x x

f x x



 
 

The example has been solved by taking p=2 and different 

values of N . The exact and approximate solutions for N=20 

and N=50 are shown in Fig. 1-Fig. 4. 
 

 
Fig. 1. Plot of exact and approximate solution of 1( )f x  for 20.N   

 

 
Fig. 2. Plot of exact and approximate solution of 1( )f x  for 50.N   

 
Fig. 3. Plot of exact and approximate solution of 2( )f x  for 20.N   

 

 
Fig. 4. Plot of exact and approximate solution of 2( )f x  for 50.N   

 

TABLE I: ABSOLUTE ERRORS FROM THE TEST PROBLEM IN EXAMPLE 2 

 Exact Error 

 

( , )x t  

 

( , )u x t  

 

20N   

 

 

 

40N   

(0.1,0.1)  -0.2905  -33.2 10   -45.1 10  

(0.2,0.2)  -0.2063  -33.4 10   -45.0 10  

(0.3,0.3)  -0.1300  -32.9 10   -45.0 10  

(0.4,0.4)  -0.0613  -32.9 10   -44.9 10  

(0.5,0.5)  0  -32.8 10   -44.8 10  

(0.6,0.6)  0.0542  -32.7 10   -44.8 10  

(0.7,0.7)  0.1016  -32.7 10   -44.7 10  

(0.8,0.8)  0.1425  -32.5 10   -44.6 10  

(0.9,0.9)  0.1774  -32.6 10   -44.4 10  

 

Example 2. Consider the following parabolic problem  

2

2

4

0

1

,

1
( ,0) sin( ( )),

4 2

(0, ) (0, ) ( ),

(1, ) (1, ) ( ),

x

x

u u

t x

u x x

u t u t h t

u t u t h t



 


 

 

 

 

 

which  

2 2

4

0

2 2

1

1
( ) exp{ } cos exp{ }sin ,

4 16 8 4 8

1
( ) exp{ } cos exp{ }sin ,

4 16 8 16 8

t t
h t

t t
h t

   


   


   

   

 

and is easily seen to have the exact solution  
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21
( , ) sin( ( ))exp{ }.

4 2 16

t
u x t x

 
    

We report the absolute value of the errors of our method 

with N=20, 30, 40, at various points in Table I. 
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