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Abstract—The purpose of present paper is to establish the 

regularity of classical solution for second grade fluid. We 

consider unsteady flow passing through the porous medium. 

The incompressible fluid is taken between two rigid plates. We 

apply the magnetic field of the system and Darcy's law is 

performed due to porous medium. In addition uniqueness of 

classical solution is also verified. Finally neglecting the effect of 

porosity we obtain a unique classical solution of MHD second 

grade fluid.  

 

Index Terms—Porous medium, second grade fluid, classical 

solution. 

 

I. INTRODUCTION 

Several materials (non-Newtonian fluids) in industrial and 

technological applications differ greatly from Newtonian 

fluids in their rheological characteristics. These liquids do 

not obey the Newton's law of viscosity. In particular, such 

fluids are encountered in geophysics, chemical and nuclear 

industries, material processing, petroleum and many others. 

Also all the non-Newtonian fluids cannot be described by one 

constitutive equation. Researchers in the field are using 

several constitutive relationships for the non-Newtonian 

fluids. Much attention in the past has been devoted to the 

flows of second grade fluid (a simplest subclass of 

differential type non-Newtonian fluids). Numerous studies 

have been made for the one dimensional unsteady flows of 

second grade fluid (see [1]-[10] for few latest articles). 

Motivated by such facts, our intention here is to develop 

regularity of unique classical solution for unsteady flow of 

MHD second grade fluid in a porous medium. The fluid is 

consider between two plates. We apply the magnetic field of 

the system and Darcy's law is performed due to porous 

medium. 

 

II. DESCRIPTION OF THE PROBLEM 

We consider the flow of a MHD second grade 

non-Newtonian fluid between two horizontal parallel rigid 
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plates.  The x-axis is taken parallel to rigid plates y-axis is 

perpendicular to x-axis. 

For the unidirectional flow, the velocity field is 

 

                      ( , ),0 ,V u y t


                                (1) 

 

where the above definition of velocity automatically satisfies 

the incompressibility condition. The equation of motion in a 

porous medium without body forces is 

 

                    ,
dV

div r
dt

  


                             (2) 

 

where  is the density of fluid, dV

dt


 is the material time 

differentiation, 


 is the Cauchy stress tensor, and r


 is the 

Darcy's resistance in a porous space. The Cauchy stress 

tensor of an incompressible second grade fluid has the form 

[11]-[15] 

 

                  2

1 1 2 2 1 ,pI A A A       
    

             (3) 

 

in which p is the pressure, I


is the identity tensor, 

( 1,2)i i  are the normal stress moduli, and ( 1,2)iA i 


are 

the first two Rivlin-Ericksen is defined as 

 

                     
1 ( ) ( ) ,TA gradV gradV 
  

                          (4) 

 

           1
2 1 1( ) ( ) .TdA

A A gradV gradV A
dt

  


   

                 (5) 

 

In studying fluid dynamics, If (3) is required to be 

compatible with thermodynamics, then the material moduli 

must meet the following restrictions 

 

              
1 1 20,    0,   | | 0.                             (6) 

 

For the unsteady flow in porous medium, the Darcy 

resistance for a second grade fluid, which is a measure of the 

flow resistance offered by the solid matrix, following Vafai 

and Tien [16], is given by 

                         
1( ) .xr u

K t


 


  



                               (7) 

From (1) (5) and (7) and for simplicity ignoring arrow 

for vector quantity, we have 

  
2 3
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1 1 02 2
( )

u u u
u B u

t y y t K t


     
   

    
    

     (8) 
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The relevant initial conditions is 

 

                         
0( ,0) ( ),u y u y                                         (9) 

 

where 
0 ( )u y  is the initial velocity and u  vanishes at the  

lower  and upper plates.  

The literature on the  Navier-Stokes is quite extensive but 

investigators of third grade fluid are few. The pioneer work 

for a global weak solution ( , )u x t of the Navier-Stokes 

equations belong to 2 3 2 1 3(0, ; ( )) (0, ; ( ))L T L R L T H R   

with 
2 3

0 ( )u L R  and 0 0divu   was constructed by 

Leray [16] and Hopf [17], which is known as Leray -Hopf  

weak solution. Serrin [18] showed that if u is Leray-Hopf 

weak solution in , 3(0, ; ( ))L L T L R     with    

2 3
1,  2 ,  2 , 

 
         then the 

solution 3( , ) ( (0, ))u x t C R T  . The partial regularity 

theory of Navier-Stokes equations were proved by Scheffer 

[19] and further improvement was made by Caaffarelli et al. 

[20] and Tian and Xin in [21]. Further more in [22], Sohr 

introduced Lorentz spaces and proved , ,(0, ; )s r qu L T L   

with  2 3
1,  3 ,  2 ,q s r

s q
          which validate the 

strong energy inequality. 

Serrin regularity class of weak solution of the Navier- 

Stokes equations was further modified in Sohr [23] by 

introducing the Sobolev spaces of negative order, and 

derived  with 
,(0, ; )s qu L T L  2 3

1 ,  3 ,  q
s q

      2 ,s r    for 

0 1.   If u  is a weak solution in 3 3((0, ); ( )),C T L R  then 

Wahl and Giga in [24] and [25] proved  
3( , ) ( (0, )).u x t C R T   The same regularity of 

3 3(0, ; ( )),u L T L R is proved in [26] by taking 

2

0

2

0

sup || ||
L

t t

u
 

  is sufficiently small. The regularity of weak 

solution 3( , ) ( (0, ))u x t C R T   was obtained in Kozono and 

Shor [27] provided ( , )u x t  is left continuous with respect to 

3L  norm for (0, ).t T  

Cao and Wu [28] used the idea that the maximum norm of 

the vorticity controls the breakdown of smooth solutions of 

the 2D MHD equations with mixed partial dissipation and 

magnetic diffusion. In other words, if a weak solution of the 

2D MHD equations with mixed partial dissipation and 

magnetic diffusion is initially smooth and loss its regularity at 

some later time, then the maximum vorticity necessary grows 

with out bound as the critical time approaches. That is if the 

velocity field u  of a weak solution and Vorticity 

w u  satisfies 

0 0

|| || || ||

T T

u dt w dt       

Then this solution is a classical solution on [0, ].T  We 

apply this idea [28] and find the classical solution of MHD 

second grade fluid in a porous medium. 

Our main result is 

Theorem 1 

Assuming 
2,1

0 2u W  then the equations (8) and (9) have 

a unique classical solution u  satisfying  

 
2,1

2([0, ]; ( )),Tu L T W Q  2,1

2([0, ]; ( ))Tu L T W Q  

 

where u
w u

y


   



  represent the vorticity and 

2 [0, ].TQ R T    

 

III. PROOF OF THEOREM 1 

For proving Theorem 1, we need several propositions. 

A. Proposition 1 

If  u  is a solution of Eqs (8) and (9) then vorticity  

u
w u

y


   



 satisfies  

 

2

2

2

2

2

21
1

0

2

2 01
0 1

sup

,

L
t T

L

L

L

u
u
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2 01
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|| || ,

L
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L

L

L

w
w

K y

w
C w
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where C depends on T 

B. Proof 

Taking the inner product of Eq (8) with u  and using 

integration by parts, we obtain 

 

2 2

2 2

2

21

2
2 2

1 0

1
| |

2

| | ,

R R

R R

u
u y x y x

K t y
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y x B u y x

y y t K
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21
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where 2 1
0

2
2 B

K K

 
     and 

12 .   Now using 

Gronwall’s inequality, we have 

 

2

2

2

2

2

21
1

0

2

2 01
0 1

sup

,

L
t T

L

L

L

u
u

K y

u
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From (8) and (9), the vorticity w  satisfies the following 

equations 

 
2 3

21
1 02 2

w w w
B w

K t y y t K

  
   

     
      

      

   

(10) 

 

                              0,0 ( ).w y w y                               (11) 

 

Taking inner product of (10) with w  and integrating by 

parts, we get 

 

2

2 2

2

2 2

21 1

22

0

1

2 2

                                

L

L L

L

d w d w
w

K dt y dt y

B w
K
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d w w
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B w
K
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B w
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where 2 1
0

2
2 B

K K

 
     and 

12 .   Now using 

Gronwall’s inequality, we have 

2

2

2

2

2

21
1

0

2

2 01
0 1

sup

,

L
t T

L

L

L

w
w

K y

w
C w

K y

 
 

 
 

 

  
      

  
       

 

where C depends on T 

C. Proposition 2 

If  w  is a solution of Eqs (10) and (11) then 

2 2

2 2

22 2

1
1 2

0

22 2

0 01
1 2

sup

,

t T
L L

L L

w w

K y y

w w
C

K y y

 
 

 
 

 

   
       

   
        

 

 

C depends on T 

D. Proof 

Taking inner product of (10) with 
2

2

w

y





 and integrating 

by parts, we get 
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where 2 1
0

2
2 B

K K

 
     and 

12 .   Now using 

Gronwall’s inequality, we have 
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22 2

1
1 2
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0 01
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,

t T
L L
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w w
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w w
C
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where C depends on T 

E. Proof of Theorem 1 

For elementary inequality (see Lemma 14 of [29])  

 
2

2 2 2
,      f f f f f C


       

 

We have by using f w  and propositions 1 and 2 that 

0

( ) ,

t

w d d  


   

for [0, ].t T  

For the uniqueness, we assume that 1u  and 2u  are two 

solutions of (8) having the same initial conditions. Therefore 
2 3

21 1 1
1 1 1 0 12 2

( )
u u u

u B u
t y y t K t


     
   

    
    

(12) 

where C depends on T.
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1 1 2 0 22 2
( )

u u u
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t y y t K t


     
   

    
    

     

(13)  

                                                                                               

Subtracting (13) from (12) and letting  1 2 ,u u g    we 

have   

2 3
2

1 1 02 2
( ) ,

g g g
g B g

t y y t K t


     
   

    
    

  (14) 

   0,0 .g y g y  

Taking the inner product of (14) with g and after using 

integration by parts, we have 
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where 2 1
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2
2 B

K K

 
     and 

12 .   Now using 

Gronwall’s inequality, we have 
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For the special case when we assume that the medium is 

not porous then we take   in (8) and find some results. 

F. Corollary 1 

If  u  is a solution of Eqs (8) and (9) with 0    then 

velocity u  and vorticity  u
w u

y


   


 satisfies  
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where C depends on T. 

G. Corollary 2 

If  w  is a solution of Eqs (10) and (11) with 0   then 

 

2 2
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C depends on T. 

For this case Theorem is also satisfied. 
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