
  

 

 

 

  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

    

 

   

International Journal of Applied Physics and Mathematics, Vol. 4, No. 2, March 2014

81DOI: 10.7763/IJAPM.2014.V4.259

  

 

Abstract—In this paper a numerical algorithm is described 

for solving the boundary value problem associated with 

axisymmetric, inviscid, compressible and rotational and 

irrotational flow. The algorithm is capable of calculating the 

duct wall geometries from prescribed wall velocity distributions. 

The equations modeling the flow are expressed using the stream 

function (x, y) and the function (x, y) as independent 

variables, where for irrotational flow (x, y) can be recognized 

as the velocity potential function, for rotational flow (x, y) 

ceases being the velocity potential function but does remain 

orthogonal to the stream lines, the x and y are the usual axial 

and radial coordinates in cylindrical coordinates respectively. 

The technique described is capable of tackling the so-called 

inverse problem where the velocity wall distributions are 

prescribed from which the duct geometry is calculated, as well 

as the direct problem where the velocity distribution on the 

pressure and suction surfaces are calculated from prescribed 

geometries. The two different cases outlined in this paper are in 

fact boundary value problems with Neumann and Dirichlet 

boundary conditions respectively with results for the Neumann 

boundary condition only included. The axial velocity and the 

swirl velocity are prescribed such that vorticity is transported 

through the duct. The governing second order partial 

differential is coupled with a set of quasi-linear hyperbolic first 

order partial differential equations with characteristics parallel 

to the  and  axes, the numerical solution is thus obtained 

iteratively using finite differences to approximate derivatives. 

 

Index Terms—Rotational, compressible flow, 

Hagen-Poiseuille flow, swirl velocity. 

 

I. INTRODUCTION 

Designers of annular ducts require numerical techniques 

for calculating wall geometries from a prescribed velocity 

distribution. The objective of the prescribed velocity is 

typically to avoid boundary layer separation see for example 

[1]. At inlet Hagen-Poiseuille flow is prescribed (along with 

an appropriate swirl component of velocity) such that the 

flow is rotational.  

This paper describes a numerical algorithm for solving the 

boundary value problem that arises when the independent 

variables are  and  where  and  have been previously 

defined. The dependent variable y, is the radial coordinate 

and x the axial coordinate. The numerical technique is based 

on the finite difference scheme on a uniform rectangular 

mesh. Similar work can be found in [2], [3].  

 

II. THE DESIGN PLANE 

The duct is set in a meridional plane with points in the flow 
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field given in terms of cylindrical coordinates, (y, , x)), with 

the x axis the axis of symmetry. The corresponding velocity 

components are represented by uy, ua and ux. The speed q is 

given by 

 
1/ 2

2 2

x yq u u   

which may be prescribed on either or both of the duct walls. 

Previous work in [4] has shown that the governing partial 

differential equation that the radius y satisfies is given by: 
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where (x, y) is the usual stream function and wa is the 

component of vorticity perpendicular to the plane, (x, y)is a 

function orthogonal to the stream line and  calculation of the 

axial coordinate is given by:  
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and the speed is computed from:  
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III. THE NUMERICAL ALGORITHM IN THE DESIGN PLANE 

Rewriting the partial differential equation that y satisfies 

(equation (1)) as:  
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with: a=a(y, , ), b=b(y, , ), c=c(y, , ), and where a, b 

and c are function of the arguments shown. For problems 

posed in the design plane c=0, the a and b will vary 
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depending on whether the flow field is compressible, 

irrotational or swirl free etc. Writing in finite difference form 
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Thus at the point ( , )i j    (to be denoted by (i, j) from 

now on in this paper), the equation is represented by a 

computational molecule as:  
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where the N, S, E and W and R may be identified as  

 

2

, , 1,

2

, 1, ,

2

, , 1 ,

2

, , 1 ,

2 2

, , ,

2 2

, ,

( ) ( )

( ) ( )

( ) ( )

( ) ( )

4(( ) ( ) ))

2( ) ( )

i j i j i j

i j i j i j

i j i j i j

i j i j i j

i j i j i j

i j i j

W a a

E a a

N b b

S b b

C a b

R c









 

 









  

  

  

  

   

  

 

 

IV. THE DIFFERENCE EQUATIONS 
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similarly yi,0 prescribed as the Dirichlet data for  

0 i M. 

 

V. VECTOR FORM OF THE DIFFERENCE EQUATIONS 

The above equations can be written more conveniently in 

matrix-vector form as: 
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VI. DIRECT SOLUTION OF THE DIFFERENCE EQUATIONS 

The matrix-vector equation (equation (5)) can be written 

as   
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With diagonal matrices 
(i)W and 

(i)E and tridiagonal 

matrix 
(i)A  all of order (NXN), and column vectors 

( )i
Y and 

( )i
R of order N. To solve the vector recurrence relation a 

speculation is made that the 
( 1)i

Y


vector can be related 

linearly to the 
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Y  vector as follows: 
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using central differences (with c0) gives: 

Equation (4) applies for i=1 to M; j=1 to N on a uniform 

mesh as described in [5], with special consideration at j=1

and j=N, so that with Dirichlet boundary conditions, say for 

j=N

with 1, Niy prescribed as the Dirichlet  data for 0  i  M. For

j=2 to N-1

and for j=1

( 1) ( ) ( )(i)i i i
Y B Y K


                            (7)

where the 
( )iB and the 

( )i
K are at present unknown matrices 

and column vectors respectively. Substituting (7) into (6) 

gives: 
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But )
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KYBY thus equating coefficients 

implies  
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For i=0 this gives  
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To determine the
(1)

K , if the first iterate 
(1) 0B   then 

(1) (0)
K Y . 

The matrix and vector sequences are now defined by 

equations (8) and (9) for i=1 to M. The Y(i) vectors are now 

calculated starting from right to left (as 
(M+1)

Y is known) 

using:  
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The diagonal matrices 
( )iW and ( )iE have elements  
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The tridiagonal matrix A has entries  

 

, ,i j i jA C  , j = 1 to N, 

 

+1, ,i j i jA N  and 
, 1 ,i j i jA S  , for  j = 1 to N-1. 

 

VII. THE BOUNDARY CONDITIONS 

A Neumann boundary condition on only one bounding 

wall will be analysed but similar treatment can be applied so 

that such a condition applies on other surfaces. In this case 

the vector of unknown y values is extended to include the j=0 

row (for the top boundary) and j=N+1 for the bottom 

boundary, (as shown in [6]). The difference scheme is now 

applied over this extended set i.e. the scheme is centered on 

the point j=0, (and j=N+1 for the bottom boundary). 

Considering for the moment only having a Neumann 

condition on the top boundary, then centering the scheme on 

j=0 will involve the value of y at j=-1, this term is expressed 

in terms of the value of y at j=1 using the known normal 

derivative, such that: 
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so at the mesh point (i, 0) (i=1, 2, …. M) the finite 

difference scheme gives: 

,0 1,0 ,0 ,0 ,0 1,0 ,0 ,0 , 1

,0 ,1

i i i i i i i i i

i i

W y C y E y R N y

S y

     


 

 

Applying the boundary condition gives 
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The normal derivative is now known in terms of the 

prescribed speed which in this case is along the top boundary. 

The matrix-vector equations become  
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Similar analysis can be performed if the bottom boundary 

is to have a Neumann boundary condition as mentioned 

previously. The technique can also be applied to the case of 

having the so-called Robin boundary conditions.    

 

VIII. PRESCRIPTION OF THE AXIAL AND SWIRL 

COMPONENTS OF VELOCITY 

Here numerical solutions to inviscid axisymmetric flow 

with constant vorticity and a swirl velocity will be derived. 

The axial velocity component ux(y) at inlet will be chosen to 

be of the form:  
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as described in [7] where G represents the pressure 

gradient,  is the dynamic viscosity, A and B are constants 

not to be confused with the A and B occurring in the design 

plane equations. If the following boundary conditions are 

applied: 
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eliminating B above gives  
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with swirl velocity given by ylkyyu /)(  , where the 

k and l are constants, defining the so-called free and forced 

vortex whirl respectively.. For the case when body forces 

exist, for example when the effect of the blades are being 

considered the force is resolved into a component 

perpendicular do the flow direction, modeling the guiding 

action of the blades and into a component parallel to the flow 

direction, modeling viscous effects, these two cases are 

discussed in [8] for an incompressible fluid. 

 

IX. THE FLOW EQUATIONS IN THE PHYSICAL PLANE(Y,, X). 

Adopting cylindrical coordinates with y being the radial 

coordinate,  the circumferential and x the axial coordinate, 

defining velocity components uy , u  and  ux  with 

corresponding vorticity components y,,,x in the 

direction of increasing y,  and x respectively, then the 

equation of motion for homentropic (and no body forces), 

inviscid, compressible and axisymmetric flow  becomes:  
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D is the material derivative? Equation (10) can be 

written using well known vector identities as: 

 
2

1

0

1

y y y

x y

y

x y

x x x
x y

u u u u p
u u

t x y y y

u uu u u
u u

t x y y

u u u p
u u

t x y x



  





   
    

   

  
   

  

   
   

   

                      (11) 

 

Furthermore  
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can be written (once again using an appropriate vector 

identity as)  
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Thus for steady flow Crocco’s form of the equation of 

motion is obtained, i.e.  
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In addition for axisymmetric flow the vorticity vector   

becomes  
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The equation of continuity is given by  
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ux(y1)= u1; ux(y2)= u2 where u1 and u2  are chosen so that 

the maximum value of ux(y), uxmax(y), say is a multiple of u1

and u2 with y1 and y2 being the two inlet radii (inner and outer 

respectively), so that



  

so that  
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and substituting in equation (2) and integrating gives  
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The arbitrary function f() represents the freedom in the 

cross stream distribution of  and choosing f() to be unity 

everywhere  can be identified as the usual Stokes stream 

function:  
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With this choice for A, namely )/(1 yA , equation (2) is 

simply an identity but in order to discuss equation (3) 

attention must be restricted to isentropic flow of a perfect gas 

with constant specific heats. In the absence of body forces the 

equation of motion can be written in Crocco’s form as:   

 

H T S u                                (15) 

 

where T is the gas temperature, S is the entropy and H the 

stagnation enthalpy. The scalar product of the right hand side 

of Crocco’s equation with u  vanishes by virtue of the 

isentropic flow assumption and hence H is constant along 

streamlines, that is along each stream surface of revolution in 

axisymmetric flow and therefore both H and S are functions 

of   alone.  A further quantity dependent only on   can be 

obtained by substituting for 
y xand   in the  component 

of Crocco’s equation, equation (12), gives  
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where ds
q

dt
 . A convenient expression for   for use in 

equation (3) can be obtained from either the x component of 

Crocco’s equation as here the y-component:- 
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using the Stokes’ stream function this becomes:  
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which is the required expression to be used in calculation of B 

according to equation (3).  
 

 
Fig. 1. The meridional plane. 

 

X. PRESSURE, DENSITY, SPEED AND TEMPERATURE 

RELATIONS 

Consider a particle of fluid with speed iq , pressure ip  

density i  and temperature iT  at the point ( , , )i ix y in 

the flow field, if iK is a quantity dependent on the entropy  S 

then at  ( , , )i ix y  , ( )i i ip K S  , where P

V

c

c
  , 

with Pc and Vc  being the usual specific heats at constant 

pressure and volume respectively. Defining the total enthalpy 

of the gas at ( , , )i ix y as iH , then  

21

2
i P i iH c T q  . The ideal gas equation becomes 

p
RT


 (for one mole) with the additional relations 

p vR c c   and, VP cc / with the speed of sound c 

given by  
d

dp
c 2 . Suppose also that the fluid element is 

brought adiabatically to rest so that 0iq  and by definition 

of the stagnation values for the pressure, density and speed 

denoted by the subscript s then  

s s ip K   

and  

s P sH c T  

as the change is adiabatic it follows that  
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Referring to the meridional plane Fig. 1, it may be deduced 

that 
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and  
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using the Ideal gas equation   
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using the well known result that sss pc  /2     the 

following results are obtained  
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XI. DOWNSTREAM CONDITIONS 

Downstream a cylindrical flow condition as discussed 

below will be prescribed. Defining the pressure function H() 

and the function C() as  

2 21
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 yuC )( for 

cylindrical flow radial equilibrium (from equation (11)) 

radial component gives 
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Integrating gives: 
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which is the required expression in the calculation of the 

vorticity transported through the duct. 

 

 
   

In this paper the Neumann boundary condition will be 

prescribed on the top wall boundary so that it is the speed q 

that is given as a function of arclength along the top boundary. 

The function chosen to give a the q distribution is chosen to 

be cubic given by the following piecewise continuous 

function 

 

,)( uqsq   for 1ss   

 

,)( 23 dcsbsassq  for 21 sss   

 

,)( dqsq   for 2ss   

 

where the constants a, b, c and d are determined such that the 

cubic q(s) distribution satisfies the following conditions: 
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XII. PRESCRIPTION OF THE SPEED DISTRIBUTION CUBIC IN

ARCLENGTH, SALONG THE DUCT

which is Bernoulli equation for a compressible fluid ignoring 

the effects of gravity, [10]. If the flow is isentropic then the 

quantities iK are the same at all points along a given 

streamline and the equation set (19) are now relationships 

along the 
thi streamline and not at a specific point 

( , , )i ix y , so that 
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Choosing 2/)( 213 sss  for example gives a 

symmetrical speed distribution,  is an arbitrary scaling 

multiplier 
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application of these conditions with , qu, qd, s1 and s2 known 

gives:  
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knowing a the values of b, c and d follow by back 

substitution, whence b=-3as3, c= 3a
2

3s   and  
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The inner radius is prescribed using this piecewise 

continuous function giving rise to a radius distribution as a 

function of the axial coordinate.   

 

 
Fig. 2. The geometry and speed distribution (along the top boundary) produced given a swirl velocity given by 

2( log (| | ) /(4 )x eu G y A y B      and 

0.1
u

y
 

 0.1/u y  . 

 

 
Fig 3. The geometry and speed distribution (along the top boundary) produced given a Swirl velocity 0.3 0.6 /u y y    and an axial velocity at inlet 

given by 2( log (| | ) /(4 )x eu G y A y B     . 

 

XIII. CONCLUSIONS 

As shown in Fig. 2-Fig. 4 geometries have been produced 

subject to given upstream and downstream conditions with 

prescribed Dirichlet boundary conditions. In this case 

vorticity at inlet has been specified by defining the axial 

velocity to be of the form  

)4/()|(|log()( 2 ByAyGyu ex   

with swirl velocity given by ylkyyu /)(  , where the 

k and l are constants, defining the so-called free and forced 

vortex whirl respectively. The downstream conditions were 

such that: cylindrical flow was present. Dirichlet boundary 

conditions were prescribed however the case with Neumann 

conditions can be accommodated using the algorithm, in 

addition so can the case with Robin boundary condition. 

Further examples of the algorithm with a combination of 

boundary condition are given in [5], [6], [8], [9]. It was found 

that at most eight iterations were required to achieve an 

acceptable level of convergence, with the technique 

accelerated using Aitken’s Method. 
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Fig. 4. The geometry and speed distribution (along the top boundary) produced given a Swirl velocity 0.7 /u y    and an axial velocity at inlet given by 

2( log (| | ) /(4 )x eu G y A y B     . 
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