
  

 

Abstract—Numerical calculations of large scale corrugated 

core sandwich structures are, due to their characteristic cross 

sections, generally very labor-intensive and costly. With the 

application of effective orthotropic FE-shell elements, which are 

based on a homogenization technique, modeling and 

computation of these structures can be carried out more 

efficiently. In the present paper an analytical homogenization 

framework is presented. For the verification of the analytical 

stiffness predictions a parametric study is performed employing 

FE-unit cell analyses. Numerical analyses of four-point bending 

tests employing effective orthotropic shell elements are 

performed in order to demonstrate the effectiveness of these 

elements. Finally, the numerical bending test results are 

verified experimentally. 

 

Index Terms—Corrugated core sandwich structures, finite 

elements, lightweight design, orthotropic material behavior. 

 

I. INTRODUCTION 

Metro vehicles, passenger coaches or bus body structures 

are only a small selection from a wide range of applications 

of corrugated core sandwich (CCS) panels in large scale 

structures. As CCS panels are effective lightweight integral 

design components which achieve a significant reduction in 

mass and assembly costs in comparison to conventional 

frame structures, their area of application has increased 

significantly in recent years [1].   In vehicle frame structures 

CCS panels made of aluminum are employed in the roof, 

sidewall [2] and floor areas. Typical cross sections are shown 

in Fig. 1.  
 

 
Fig. 1. Typical cross sections of CCS panels in vehicle frame structures. 
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For the numerical analysis of large scale CCS structures 

isotropic finite shell elements could be applied. However, 

due to the complex panel cross sections, a detailed modelling 

of the isotropic face sheets and the interior stiffeners is 

required, which leads to either huge or too coarse FE-meshes. 

In order to reduce the modeling input as well as 

computational requirements, effective, i.e., homogenized, 

orthotropic shell elements have been developed allowing 

substantial reduction of degrees of freedom by taking the 

detailed geometry implicitly into account. These thick shell 

elements are based on analytical approaches for predicting 

the complete orthotropic mechanical response of the 

investigated CCS panels.  This paper aims, on the one hand, 

to present and verify the analytical stiffness approaches and, 

on the other hand, to show that the application of effective 

orthotropic shell finite elements significantly increases the 

efficiency of the analysis of CCS structures. 

 

II. INVESTIGATED CONFIGURATIONS 

The investigated CCS panels consist of two face layers (fl), 

which are separated by periodically placed interior stiffeners 

(st). In the present paper two specific stiffener configurations 

are studied: in the first type, referred to as “rectangular cross 

section”, all stiffeners are oriented perpendicularly to the face 

layers, Fig. 2a. The stiffeners of the second type, referred to 

as “diagonal cross section”, are arranged diagonally with a 

certain inclination to the face sheets, Fig. 2b. 

 

  
Fig. 2a. Rectangular cross section.              Fig. 2b. Diagonal cross section. 

 

Fig. 2a and Fig. 2b show the cross section parameters for 

both types. For each investigated configuration both face 

layers have the same thickness tfl and all interior stiffeners 

have the thickness  tst. The distance between the midplanes of 

the face layers is H. A periodic length is defined with a for 

the rectangular cross section  and  2a for the diagonal cross 

section. For the face sheets and the interior stiffeners the 

same linear elastic, isotropic material (E,G,ν)  is assumed. 

 

III. EFFECTIVE ORTHOTROPIC SHELL ELEMENTS 

With the introduction of effective orthotropic shell 

elements CCS structures can be modeled efficiently: on the 

one hand, only one shell element over the thickness of the 

panel is required and, on the other hand, the element size does 
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not depend on the position of the interior stiffeners any 

longer. As a result coarser meshes can be used.  

Effective orthotropic shell elements are conventional thick 

finite shell elements as typically provided by commercial 

FE-codes. Their orthotropic mechanical behavior is defined 

via equivalent section properties. With the definition of an 

appropriate coordinate system, Fig. 2a and 2b, the equivalent 

section properties correspond to the components of the 

orthotropic effective section stiffness matrix of the material 

law given in (1).  
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The effective section stiffness matrix is devided into three 

parts: the effective membrane stiffness matrix A, the 

effective bending stiffness matrix D, and the effective 

transverse shear stiffness matrix K. The mathematical vector 

on the left side consists of the membrane forces (Nxx, Nyy, Nxy), 

the bending moments (Mxx, Myy, Mxy), and the transverse 

shear forces (Qxz, Qyz), all stress resultants are values per unit 

length. The strain vector on the right side includes the 

membrane strains in the shell’s reference surface (εxx, εyy, γxy), 

the cross section curvatures (κxx, κyy, κxy) and the transverse 

shear angles (γxz, γyz).  

The components Ai3, A3j, Di3 and D3j for i ≠ 3 and j ≠ 3 as 

well as K12 and K21 vanish as it is presupposed that the 

employed coordinate system (x,y,z)  coincides with the axes 

of orthotropy of the investigated CCS panel configurations. 

The remaining components of the effective section stiffness 

matrix, which are not specified in (1), are set to zero, because 

coupling effects are not expected for the investigated cross 

sections.  

In the following subsections a homogenization technique 

is presented, which uses analytical formulas for the 

prediction of the components of the effective section stiffness 

matrices A, b and K of the investigated configurations.  

A. Effective Membrane Stiffness Parameters: A11, A12, 

A22 

For the derivation of the components of the membrane 

stiffness matrix it is assumed that in x-direction the 

membrane stiffness of the face layers dominates. Thus 

Only contributions from the face layers are taken into 

account when calculating A11. This simplifying assumption is 

true for rectangular cross sections and applicable for diagonal 

cross sections, too. In (2) to (4) mathematical expressions for 

A11, A12, A21, and A22 are given, based on cross section 

parameters shown in Fig. 2a and Fig. 2b, with α=0 for 

rectangular cross sections. 
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B. Effective Bending Stiffness Parameters: D11, D12, D22 

The formulas for the components of the bending stiffness 

matrix are based on similar assumptions as presented in 

subchapter A. Therefore, with respect to the local, i.e. 

member bending stiffness, only these of the face layers are 

taken into account, while the local bending stiffness of the 

stiffeners are neglected. Thus, the overall bending stiffness of 

a CCS panel subjected to Mxx, is described by the following 

expressions (5) to (7) for D11, D12, D21, and D22:  
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C. Effective Membrane Shear Stiffness Parameter: A33 

The static equivalence between the external inplane shear 

load Nxy and the internal shear flows in the face layers and the 

interior stiffeners of a CCS unit cell is utilized to derive the 

analytical expression (8) for the membrane shear stiffeness 

component A33.   

 sin233 stfl ttGA                                 (8) 

D. Effective Twisting Stiffness Parameter: D33 

In the investigated CCS panel configurations the applied 

twisting moment Mxy causes only shear flows in the face 

layers. Due to this fact  only the face layers are considered for 

the  derivation of the mathematical expression (9) for 

twisting stiffness component D33. 
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E. Effective Transverse  Shear Stiffness Parameters: K11, 

K22 

As CCS panels, in particular the investigated 

configurations with rectangular cross sections, show a weak 

transverse shear  behavior in the xz-plane, Fig. 2a, transverse 

shear deformations must be taken into account. For the 

derivation of the components of the transverse shear stiffness 

matrix two different approaches for K11 and K22 are utilized. 

For the prediction of K11 the deformation behavior of a 

CCS unit cell of one periodic length is studied analytically. A 

simplified 2D-beam model of a unit cell cantilever, which is 

loaded by Qxz at the free edge, is used. After the 

determination of the distribution of Qxz between the top and 

the bottom face layers of the unit cell, the force-method is 

applied to solve the statically indeterminate 2D-system. In a 
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second step analytical expressions for the displacements in 

z-direction at the load introduction points are derived by 

applying Castigliano’s second theorem. The determined 

displacements (w) in z-direction include the transverse shear 

(ws) and bending deformations (wb) at the free edge of the 

unit cell. With the use of formulas of the beam theory for ws 

and wb of a cantilever and considering the assumptions for the 

bending stiffness, presented in subchapter B, a mathematical 

expression for K11 can be derived. In this step also all 

membrane and bending displacements are multiplied by (1-ν2) 

in order to make K11, which was derived by employing 

2D-beam models, applicable for shells.  As the presented way 

of obtaining K11 of the diagonal cross section leads to very 

long expressions, only the formula K11,r of the rectangular 

cross section is given (10). 
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The prediction of K22 is also based on formulas which were 

developed for cantilevers [3] and which are applied to unit 

cell models loaded by Qyz at the free edge. The mathematical 

expressions of the effective transverse stiffness parameters 

for the rectangular cross section K22,r and the diagonal cross 

section K22,d are given in (11) and (12), respectively. Jx is the 

second area moment of inertia of one periodic length of the 

cross section. 
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IV. VERIFICATION AND PARAMETRIC STUDY 

For the verification of the analytically predicted effective 

stiffness values finite element unit cell analyses of the 

investigated CCS panels were performed [4].  

The effective membrane and bending stiffness parameters 

are obtained numerically employing the in-house 

homogenization software MEDTOOL [5]. In order to 

compare the analytical stiffness values with the numerical 

results a parametric study is carried out. Significant cross 

section parameters are selected and varied within an 

appropriate range.  

The parameters of the diagonal cross section are the 

inclination α of the interior stiffeners in a range of 10° ≤ α ≤ 

60°, the distance between the face layers H in a range of          

20 mm ≤ H ≤ 80 mm and the ratio between the thickness of 

the face layers and the interior stiffeners tfl/tst, which is set to 

the values of 1 and 2, respectively. The stiffener thickness to 

the distance of the face layers ratio is set to tst/H = 0.05. 
 

 
Fig. 3. Comparison of the analytical (Aij, Dij) and the numerical (Aij-FE, 

Dij-FE) stiffness components of the diagonal cross section (10° ≤ α ≤ 60°, 

H=50 mm, tfl/tst=2). 

 

 
Fig. 4. Comparison of the analytical (Aij, Dij) and the numerical (Aij-FE, 

Dij-FE) stiffness components of the rectangular cross section (0.4 ≤ a/H ≤ 2, 

H=50, tfl/tst=2). 
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For the rectangular cross section the following parameters 

are investigated: the ratio of the periodic length a to the 

distance between the face layers H in a range of 0.4 ≤ a/H ≤ 2  

and H in a range of 20 mm ≤ H ≤ 80 mm. The values of tfl/tst 

and tst/H correspond to the values of the diagonal cross 

section. 

The results of the parametric study show a good agreement 

between the analytically and numerically predicted stiffness 

values  in the considered parameter range, Fig. 3 and Fig 4.  A 

maximum variation of less than 1% is obtained. Due to this 

outcome the graphs of only two variations of parameters are 

shown. A detailed description of the results of the complete 

parametric study is given in [5]. 

Equivalent cross section parameters are used to present the 

comparison of the numerical and analytical results of the 

components of the transverse stiffness matrix, K11 and K22, 

Fig.5 and Fig.6. In this case, too, good agreement can be 

observed. However, especially at the limits of the employed 

cross section ranges, deviations between the numerical and 

analytical values start to grow. A maximum deviation of 

about 7% for K22 at an inclination angle of 60°of the diagonal 

cross section is observed. It is also worth mentioning that, in 

contrast to the values of the membrane and bending stiffness 

components, K11 and K22 of the rectangular cross section and 

K22 of the diagonal cross section decrease significantly with 

increasing  values of α and a/H, respectively. The results for 

K11 of the diagonal cross section show that the transverse 

shear stiffness values in the xz plane can be maximized 

depending on the inclination of the interior stiffeners.  

Especially for the rectangular cross section the small values 

of K11 point out their weak transverse shear stiffness behavior 

in the xz plane. 
 

 
Fig. 5. Comparison of the analytical (K11, K22) and the numerical (K11-FE, 

K22-FE) transverse shear stiffness components of the diagonal cross section, 

(10° ≤ α ≤ 60°, H=50 mm, tfl/tst=2). 

 
Fig. 6. Comparison of the analytical (K11, K22) and the numerical (K11-FE, 

K22-FE) transverse shear stiffness components of the rectangular cross 

section, (0.4 ≤ a/H ≤ 2, H=50, tfl/tst=2). 

 

V. APPLICATION OF EFFECTIVE ORTHOTROPIC SHELL 

ELEMENTS 

In order to study the efficiency of the developed effective 

orthotropic shell elements, finite element analyses of 

four-point bending tests were performed. The specimens 

were modeled, on the one hand, in very detail with isotropic 

shell elements and, on the other hand, with effective 

orthotropic shells. The results of six finite element analyses 

of models with rectangular cross sections are discussed in the 

following. All investigated samples have the same 

dimensions and are transversally stiffened, Fig. 7. 
 

 
Fig. 7. Four-point bending tests of transversally stiffened specimens used in  

the FE analyses. 

 

For all FE-analyses the FE-Code ABAQUS [6] was used. 

First a fine mesh and a coarse mesh, employing 8-noded 

isotropic shell elements were analyzed. In the fine mesh 

(33600 elements) four elements are applied along the 

stiffener height and in the face layers between the stiffeners.  
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The coarse mesh (1696 elements) uses the minimum 

number of isotropic shell elements with one element per 

stiffener height and one element in the face layers between 

the stiffeners, Fig. 7. For the isotropic shell models the 

number of elements depends strongly on the position of the 

interior stiffeners. By employing 8-noded effective 

orthotropic thick FE-shell elements coarser meshes can be 

utilized. In the present study, on the one hand, two effective 

orthotropic FE-models (11200 and 568 elements), which use 

a mesh size corresponding to the isotropic models, are 

studied. On the other hand, two effective orthotropic 

FE-models (72 and 10 elements) are analyzed which employ 

far coarser meshes. A comparison of the results of the 

investigated specimens regarding the number of variables, 

CPU time and maximum displacements are given in Table I.  
 

TABLE I: COMPUTATIONAL DATA 

Elements FE-Type Variables CPU Max. Displ. 

33600 S8R5 isotropic 783432 82,0 s 100 % 

1696 S8R5 isotropic 36312 3,04 s 99,6 % 

11200 S8R eff. orthotropic 34241 11,2 s 100,4 % 

568 S8R eff. orthotropic 11178 0,43 s 100,4 % 

72 S8R eff. orthotropic 1626 0,12 s 100,4 % 

10 S8R eff. orthotropic 318 0,11 s 100,4 % 

 

The computational data in Table I show that with the 

application of effective orthotropic shell elements the 

numerical effort can be reduced significantly, with very little 

influence on the displacements. This demonstrates the high 

efficiency of the developed effective orthotropic shell 

elements for the application in large scale CCS structures.  

 

VI. EXPERIMENTAL VERIFICATION 

For the verification of the numerically predicted 

displacement behavior of the four-point bending tests, 

corresponding experimental tests were performed. The 

four-point bending test setup is shown in Fig. 8. Specimens 

made of Polycarbonate with rectangular cross sections, see 

Fig. 9, and stiffeners in transversal and longitudinal direction 

were investigated, respectively.  
 

 
Fig. 8. Four-point-bending test setup. 

 

 
Fig. 9. Sample cross section. 

 

shell FE-model and an effective orthotropic shell FE-model, 

are compared. The displayed deformed shapes of the 

transverse shear deformations, observed in the areas between 

the supports and the load applications, of the specimen have a 

major influence on its overall displacements.  Furtheron, the 

comparison of the measured load displacement curves in the 

center of the specimens (marked with a red arrow) and the 

corresponding results of the FE-Analyses show a good 

agreement. 

 

 
Fig. 10. Deformed shapes and load-displacement curves evaluated in the 

center (red arrow) of the transversally stiffened specimen. 

 

 
Fig. 11. Deformed shapes and load-displacement curves evaluated in the 

center (red arrow) of the longitudinally stiffened specimen. 
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numerically predicted test results, employing an isotropic 

transversally stiffened specimens (Fig. 10) show that the 



  

The numerical and experimental results of the four-point 

bending tests of the longitudinally stiffened specimens are 

shown in Fig. 11. In this case it can be observed that the 

displayed deformations are dominated by bending. The 

diagram in which the measured and predicted vertical 

displacements at the center point of the samples (indicated by 

a red arrow) are displayed, also shows the good correlation 

between the numerical and experimental results. 

In both test configurations a maximum deviation of less 

than 5% between the numerical and experimental values of 

the central displacements was detected. 
 

VII. CONCLUSION 

A homogenization technique, which is based on analytical 

approaches, is presented. The analytically predicted stiffness  

values are verified for a range of geometrical parameters of 

two typical CCS cross sections by employing finite element 

unit cell analyses. The results show a deviation of less than 

1% for the membrane and bending stiffness components. For 

the transverse shear stiffness parameters also a good 

correlation between the numerical results and the analytical 

values is obtained. The results of the homogenization 

technique are used to define effective orthotropic shell 

elements. In order to prove their efficiency, finite element 

analyses of four point bending tests of transversally stiffened 

CCS panels are performed. A comparison of the results and 

the computational data of the coarse isotropic shell model 

(1696 elements) and the corresponding effective orthotropic 

shell model (348 elements) show that, with the application of 

effective orthotropic shells the number of variables can be 

reduced to 30% and the CPU time to 14% of the isotropic 

shell model, when the same mesh-size is used. If a coarser 

mesh is applied in the effective orthotropic shell models the 

number of variables can even be reduced to 0.6% and the 

CPU time to 3.6%. The comparison of the maximum 

displacements of all models shows a deviation of less than 

1%. These results show clearly the high efficiency of the 

developed effective orthotropic shell elements for modeling 

corrugated core sandwich panels. 

An experimental study of transversally and longitudinally 

stiffened specimens, employing four-point bending tests,   

also verified the applicability of the developed effective 

orthotropic shell elements. 

As far as local stresses are concerned, the stress resultants 

calculated by models using effective orthotropic shell 

elements can be used in a localization procedure, i.e. by 

inverting the homogenization. 
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