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Abstract—It is very important to specify the forms of 

arbitrary parameters in differential equations. The procedure 

for performing this task is known as Lie symmetry classification. 

The main technique used to analyze the symmetry classification 

problems is the traditional Lie's algorithm. In this paper, 

symmetry classifications of KP equation and Hopf equation are 

given. 
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I. INTRODUCTION 

Many physical phenomena in the fields such as physics, 

fluid dynamics can be described by nonlinear partial 

differential equations (PDEs) [1], [2]. The theory of Lie 

symmetry groups of differential equations was developed by 

S. Lie, which was called classical Lie method. Nowadays, Lie 

symmetry method has been widely used in diverse fields of 

mathematics and many areas of physics [3]-[6]. Determining 

the group invariant solutions, construction of new solutions 

for the system from the known ones, group classification of 

PDEs, reduction of the order of ordinary differential 

equations, and mapping solutions to other solutions are the 

important applications of classical Lie method in the theory 

of differential equations[6]-[12]. Symmetry classification of 

PDEs with arbitrary parameters (or functions) is one of the 

main applications of symmetry method to differential 

equations. For a family of PDEs with arbitrary parameter  , 

finding both the parameters  and corresponding maximal 

set of symmetries  is called the symmetry classification 

problem of the family of PDEs [14]-[18]. The main technique 

used to analysis the symmetry classification of PDEs with 

arbitrary parameters is the Lie’s algorithm. 

Consider a general form kth-order PDEs with parameter 

 : 

  0, 1, ,F S                           (1) 

where  1, , nx x x   denotes n  independent variables, 

 1, , mu u u   denotes the dependent variables,  

and  iu  denotes the set of u  with respect to x  and 
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The generator of the symmetry of PDEs (1) is decomposed 

to [2] 
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We will write the k-th prolongation of X to the derivatives 
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The system (1) is invariant under the symmetry group with 

the generator (2) if and only if  

  0,F E                                   (4) 

when (1) is held. 

One then reads off the coefficients of the different 

monomials in the derivatives of u  in (4) and setting those to 

zero yields a linear over-determined PDEs, called the 

determining equations (DTEs)  denoted as   0D   , 

satisfied by   and which determine operator  . 

In the above algorithm, admitting symmetry of PDEs(1) 

means that the determining equation   0D   is solvable. 

Thus, the question of the group classification is completely 

transformed into solving the parameterized determining 

equations. It is known that the over-determined PDEs 

  0D    is not always solvable for every  . Thus, we 

have to find the proper conditions for   so that the equation 
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  0D    is solvable. The conditions are usually given by 

the so called classifying equations, which are satisfied only 

by  . The key point to determine the symmetry 

classification is to find out classification equations and solve 

determining equations. 

 

II. SYMMETRY CLLASSIFICATION OF PDES 

A. The Perturbed KP Equation 

The KP equation is given by  

     0,t x xxx yy
x

u f u u u g x u


                 

where  f u ,  g x  are arbitrary functions. 

Firstly, we seek a symmetry generator 
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of equation (7)，where , ,    and   depend on variables 

, ,x t y  and u . 

Form (4), we obtain following determining equations   
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Solving this system we obtain  

1 2c c
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and classifying equations 
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for arbitrary functions    , .f u g x  

Then the solutions of the classifying equations lead to the 

following cases. 

1)    , ,f u F g x G   where ,F G  are constants. 
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where function  , ,m x t y  satisfies equation 

( tm  ) 0x xxx x yyFm m Gm   . 

2)    , , 1.f u F g x x      
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where function  , ,m x t y  satisfies equation 
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where    ,k t m t   are arbitrary functions. 
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7)    ,f u F g x  is an arbitrary function, F  is 

constant. 
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Here , 1, ,3jA j    are arbitrary constants. 

B. Hopf Equation  

Consider  Hopf  equation 

           t x x x
u uu K u u  ,                        (5) 

where  K u  is an arbitrary function. 

Introducing potential variable v , we get following potential 

system [12] 
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be the symmetry generator of system (6), where  , ,   and  

 are unknown functions of four variables , ,x t y   and .u  

The following is to determine functions , ,   and 

 and  K u and show whether or not the original equation 

(5) admits potential symmetries. i.e., at least one of the 

functions , ,   depends on potential variable v . 
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Here , 1, , 5,iK i    and , 1, , 4rA r    are 

arbitrary constants. 

 

III. CONCLUSION 

Lie's algorithm is the main technique used to analyze the 

symmetry classification of differential equations with 

arbitrary parameters. The key point to determine the 

symmetry classification is to find out classification equations 

and solve determining equations. Symmetry method has 

many applications, including the construction of analytic 

solutions of nonlinear differential equations, the 

classification of such equations, the construction of 

conservation laws, testing of numerical computations etc 

[19]-[26]. 

REFERENCES 

[1] P. J. Olver, Application of Lie groups to differential equations, New 

York: Springer-Verlag, ch. 1, 1993. 

[2] N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary 

Differential Equations, Chichester: Wiley, ch. 1, pp. 3-23, 1999. 

[3] L. V. Ovsiannikov, “Groups and group-invariant solutions of partial 

differential equations,” Dokl. RAS, vol. 3, pp. 439-442, 1958. 

[4] L. V. Ovsiannikov, Group properties of differential equations, 

Moscow: Novosibirsk, 1962, ch. 3, pp. 92-137. 

[5] W. F. Ames, “Some exact solutions for wave propagation in 

viscoelastic and electrical transmission,” Int. J. Nonlinear Mech., vol. 

17, pp. 223-230, 1982. 

[6] L. V. Ovsiannikov, Group analysis of differential equations, New York: 

Academic Press, 1982, ch. 3, pp. 92-137. 

[7] N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential 

Equations, Boca Raton FL: CRC Press, vo1. 1, 1994, ch.1, pp. 36-38. 

[8] N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential 

Equations, Boca Raton FL: CRC Press, vo1. 2, 1995, ch.2, pp. 30-35. 

[9] G. W. Bluman and S. Kumei, Symmetries and differential Equations, 

New York: Springer, 1989, ch. 4. 

[10] N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential 

Equations, Boca Raton FL: CRC Press, vo1.3, 1996, ch. 8. 

[11] T. Chaolu and Y.-S. Bai, “Differential Characteritic Set Alogorithm for 

the Complete Symmetry Classification of (partial) Differential 

Equations,” Applied Mathematics And Mechanics, vol. 32, pp. 556-566, 

2003. 

[12] G. I. Burde, “Potential symmetries of the wave equation utt=uux(x) and 

relared exact and approximate solutions,” J.Phys.A:Math.Gen., vol. 34, 

pp. 5355-5371, July 2001. 

[13] S. Kumi and G. Bluman, “When nonlinear differential equations are 

equivalent to linear differential equations,” SIAM J. Appl. Math, vol. 42, 

pp. 1157-1173, 1982. 

[14] Q. U. Changzhneng, “Allowed transformations and symmetry classes 

of variable coefficient Burgers equations,” IMA. J. Appl. Math, vol. 54, 

pp. 203–225, 1995. 

[15] M. Yürüsoy, “Group classification of unsteady boundary layer 

equations of a class of non-newtonian fluids,” J. Appl. Math.Com., vol. 

150, pp. 775-783, 2004. 

[16] M. Pakdemirli, M. Yurusoy, and A. Kuukbursa, “Symmetry groups of 

boundary layer equations of a class of non-Newtonian fluids,” Int. J. 

Non-Linear Mech, vol. 31, pp. 267-276, 1996. 

[17] P. J. Olver and P. Rosenau, “The construction of special solutions to 

partial differential equations,” Phys. Lett. A., vol. 114, pp. 107-112, Feb. 

1986. 

[18] E. Pucci and G. Saccomandi, “On the weak symmetry groups of partial 

differential equations,” J. Math. Anal. Appl., vol. 163, pp. 588-598, Jan. 

1992. 

[19] W. I. Fushchlicch, “Conditional symmetries of the equations of 

mathematical physics,” J. Ukrain Math, vol. 43, pp. 1456-1470, 1991. 

[20] S. Y. Lou, “Symmetries of the KdV equation and four hierarchies of the 

integrodifferential KdV equations,” J. Math. Phys, vol. 35, pp. 

2390-2396, 1994. 

[21] P. A. Clarkson and M. D. Kruskal, “New similarity reductions of the 

Boussinesq equation,” J. Math. Phys., vol. 30, pp. 2201-2207, 1989. 

[22] S. Y. Lou, “A note on the new similarity reductions of the Boussinesq 

equation,” Phys. lett. A., vol. 151, pp. 133-135, 1990. 

[23] S.Y. Lou, H.Y. Ruan, and D. F. Chen, “Similarity reductions of the KP 

equation by a direct method,” J. Phys. A,Math. Gen., vol. 24, pp. 

1455-1467, 1991. 

[24] S. Y. Lou and H. Y. Ruan, “Nonclassical analysis and Painleve 

property for the Kupershmidt equations,” J. Phys. A, vol. 26, pp. 

4679-4688, 1993. 

[25] J. Pucci, “Similarity reductions of partial differential equations,” 

J.Phys. A: Math. Gen, vol. 25, pp. 2631-2640, 1992. 

[26] G. W. Bluman et al., “Local and nonlocal symmetries for nonlinear 

telegraph equations,” J Math Phys., vol. 46, pp. 1-12, 2005. 

 

 

Bai Yushan was born in April 1974, in Tongliao, Inner 

Mongolia Autonomous Region of China. He received 

the bachelor degree in mathematics education from 

Inner Mongolian Normal University in 1998.  He 

received the master degree and doctor degree in solid 

mechanics from Inner Mongolian University of 

Technology in 2004, 2010, respectively. Now he is an 

associate professor of mathematics in College of 

Sciences       of      Inner      Mongolian      University of  

Technology. His research interests are in symmetry analysis of differential 

equations, Mathematics Mechanization and integrable systems and 

published more than 10 articles in recent years. 

 

International Journal of Applied Physics and Mathematics, Vol. 4, No. 1, January 2014

41


