
  

 

Abstract—With the advances of sensory, satellite and mobile 

communication technologies in recent decades, locational data 

become widely available. A lot of work has been developed to 

find useful information from these data and various approaches 

has been proposed. Locational data and trajectories are often 

used to discover behavior trends and clusters of users. In this 

paper, we propose a new scheme, namely Trajectory as Polygons 

(TaP), which uses a legacy optimization technique-Convex 

Hull-to the new problem of user behavior discovery, and have 

made some interesting and useful discoveries. In particular, we 

found TaP effectively extract trajectory properties from 

polygons generated by convex hull algorithm with a time 

window. Moreover, with a case study, we show TaP is able to 

study peoples’ lifestyle patterns while keeps their exact 

locations confidential. 

 

Index Terms—Spatial-temporal data model, convex hull 

algorithm, trajectory mining.  

 

I. INTRODUCTION 

Over the last few decades, with the increasingly accurate 

positioning services (e.g. GPS, AIS, Mobile Phone 

Triangulation, RFID/Wi-Fi tracking etc.) and the decreasing 

price of their deployment, locational data becoming 

pervasive in our daily lives and scientific researches. Either 

indoor or outdoor, it is not difficult to obtain the trace, the 

velocity, and even the acceleration of any moving entity 

(referred to as an object in this paper) of our interest with 

proper equipment and infrastructure. Massive data have been 

collected in various research projects since early 90’s [1]. As 

part of the ―big data regime‖, interests in locational data have 

recently grown even more rapidly, thanks to the new database 

technology and data mining techniques. When locational data 

coupled with time-stamps, it becomes spatial-temporal 

data-with both space (spatial) and time (temporal) 

information [2]. The timely sequence locations of an object 

define its trajectory.  

Trajectories of objects are widely used in a variety of 

business and public sector applications, such as traffic 

modeling and supply chain management [3]. More often, 

they are used in Trajectory Mining [4], and are important 

sources for Behavioral Studies-a process in which 

information related to objects’ behaviors, such as lifestyle, 

home location, and travel routing etc., could be discovered 

[5].  
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In this paper, we propose a new algorithm, namely 

Trajectory as Polygons (TaP). Using the legacy Convex Hull 

algorithm [6], together with a sliding time window 

mechanism, TaP uses polygon to represent objects trajectory, 

instead of using line segments like many existing works do. 

The mobility patterns and user behavior can be observed 

from the geometric properties (e.g. location, size, shape, and 

number of vertices/edges etc.) of these polygons. We note 

that TaP is not only a solution to one single specific problem, 

but also a general method to treat and represent locational 

data, to discover information and extract 

knowledge-regardless the quality and density of the source 

data. For example, we will demonstrate how peoples’ 

lifestyle patterns can be extracted classified and clustered 

using TaP even when the source data is scarce and largely 

inaccurate.  

A brief introduction to the existing works and challenges 

are discussed in Section II, followed by the introduction of 

the TaP algorithm in Section III. We talk about how to use 

TaP to study trajectories and study user behavior in Section 

IV, and a case study of how TaP could be used with 

locational data to discover people’s lifestyles is discussed in 

Section V. Section VI concludes the paper with the strength 

of TaP and future research directions.  

 

II. EXISTING SOLUTIONS AND CHALLENGES 

Most of the existing trajectory mining techniques can be 

classified as one of the following three categories: 

State Based: states are defined by (time, location) 

combinations [7]. The trajectory of an object is thus a series 

of states and the transitions among them. Markov-chain and 

other related models [8] can be used to study the underlying 

patterns. 

Similarity Based: similarity between trajectories can be 

calculated from the 3-dimensional or 4-dimensional 

proximity of the data points [4]. It is then usually used to 

define clusters or places of interest. 

Density Based: in large scale problems [9], importance of 

locations can simply be reflected by the density of data points 

in that area.  

While pervasive positioning technologies give us 

opportunities to access vast amount of locational data and test 

these solutions, they also raise challenges due to the sparse 

nature of data collection strategies, the diverse density of the 

data, and technical issues associated with the accuracy of the 

data [10]. For example, if the data points are scarce (either 

spatially or temporally), the similarity based solution may 

produce inaccurate results, because data points for similar 

trajectories may be far apart. On the other hand, for high 
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frequency locational data (e.g. continuously generated by 

positioning sensors), the state based approach could be 

overwhelmed by the enormous number of states. 

Compression algorithm such as [11] will be needed to 

pre-process the data and could result in inefficiency. Also, 

the density based solutions will need the timely frequency of 

data points to be normalized; otherwise their density would 

not reflect the true distribution of the moving objects. 

Moreover, we have not seen any existing solution that deals 

with the error in the location detections, which in fact could 

be crucial to the correctness of the results. Hence, when we 

study the mobility observation problem, we look for a 

solution that has the ability to adopt to different source 

locational data, and extract as much information as possible.  

On the other hand, as brought up by Giannotti et. al. in [4], 

confidentiality maybe another factor we need to consider in 

the study of human mobility. For example, the users may not 

want themselves to be identified and ―pin-pointed‖ by their 

location history. With TaP, we show that we are able to learn 

a person’s lifestyle without knowing where she/he exactly 

has been by transforming trajectory to polygons using 

Convex Hull Algorithm.  

A Convex Hull is of a set of locational points in the 

Euclidean plane or Euclidean space which is the smallest 

convex set that contains the set [12]. The problem of finding 

convex hulls finds its practical applications in pattern 

recognition, image processing, statistics, GIS and static code 

analysis by abstract interpretation. In particular, convex hull 

algorithm has been used to study home range of wild-life 

animals [13]. TaP extend these work further to the human 

mobility scenario with the relationship of their social 

behavior. More importantly, we add a sliding window with 

variable size [14] to the algorithm, so that the timely change 

of the convex hull could be studied, and user behavior 

patterns can thus be observed.  

 

III. TAP 

As shown in Fig. 11, TaP takes the raw position data of an 

object2 with UID k as input. It split the raw data of k’s 

trajectory into segments by time windows. A time window is 

determined by two factors-starting time point t and window 

size τ. Then each segment is processed by the convex hull 

algorithm and represented as a polygon P. That is to say, each 

polygon P corresponds to the movement of object k during a 

time window (determined by t and τ). The geometric 

properties, such as centroid location, area size, perimeter, and 

number of edges/vertices etc., are denoted as a function of k, t 

and τ, written as 

P (k, t, τ) = {geometric properties of P}. 

An overall data flow chart of TaP can be found in Fig. 2. 

A. Convex Hull Algorithm 

In computational geometry, numerous algorithms are 

proposed for computing the convex hull of a finite set of 

 
1 To show the trajectory clearly, the convex hull polygons in this figure is 

drawn slightly larger than they should be. 
2 We assume each object is identified by an integer UID. 

points, with various computational complexities. Computing 

the convex hull means that a non-ambiguous and efficient 

representation of the required convex shape is constructed. 

The complexity of the corresponding algorithms is usually 

estimated in terms of n, the number of input points, and h, the 

number of points on the convex hull. 

 

 
Fig. 1. Convex hull polygons of object k. 

 

 

 

Consider the general case when the input to the algorithm 

is a finite unordered set of points on a Cartesian plane. The 

lower bound on the computational complexity of finding the 

convex hull represented as a convex polygon is easily shown 

to be the same as for sorting using the following reduction. 

For the set x1,…, xn numbers to sort consider the set of 

points (x1, x1
2),…, (xn, xn

2) of points in the plane. Since they 

lie on a parabola, which is a convex curve. It is easy to see 

that the vertices of the convex hull, when traversed along the 

boundary, produce the sorted order of the numbers x1,…, xn. 

Clearly, linear time is required for the described 

transformation of numbers into points and then extracting 

their sorted order. Therefore in the general case, the convex 

hull of n points cannot be computed more quickly than 

sorting. 

The standard Ω (n log n) lower bound for sorting is proven 

in the decision tree model of computing, in which only 

numerical comparisons but not arithmetic operations can be 

performed; however, in this model, convex hulls cannot be 

computed at all. Sorting also requires Ω(n log n) time in the 

algebraic decision tree model of computation, a model that is 

more suitable for convex hulls, and in this model convex 

hulls also require Ω(n log n)  time [12]. However, in models 

of computer arithmetic that allow numbers to be sorted more 
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quickly than O(n log n) time, for instance by using integer 

sorting algorithms, planar convex hulls can also be computed 

more quickly: the Graham scan algorithm [15] for convex 

hulls consists of a single sorting step followed by a linear 

amount of additional work. 

As stated above, the complexity of finding a convex hull as 

a function the input size n is lower bounded by Ω(n log n). 

However, the complexity of some convex hull algorithms can 

be characterized in terms of both input size n and the output 

size h (the number of points in the hull). Such algorithms are 

called output-sensitive algorithms. They may be 

asymptotically more efficient than Θ(n log n) algorithms in 

cases when h = O (n). 

The lower bound on worst-case running time of 

output-sensitive convex hull algorithms was established to be 

Ω(n log n) in the planar case [12]. There are several 

algorithms which attain this optimal time complexity. The 

earliest one was introduced by Kirkpatrick and Seidel in 1986 

(who called it the ultimate convex hull algorithm) [16]. A 

much simpler algorithm was developed by Chan in 1996, and 

is called Chan’s algorithm [17]. 

A number of algorithms are known for the 

three-dimensional case, as well as for arbitrary dimensions 

[18]. For a finite set of points, the convex hull is a convex 

polyhedron in three dimensions, or in general a convex 

polytope for any number of dimensions, whose vertices are 

some of the points in the input set. Its representation is not so 

simple as in the planar case, however. In higher dimensions, 

even if the vertices of a convex polytope are known, 

construction of its faces is a non-trivial task, as is the dual 

problem of constructing the vertices given the faces. The size 

of the output may be exponentially larger than the size of the 

input, and even in cases where the input and output are both 

of comparable size the known algorithms for 

high-dimensional convex hulls are not output-sensitive due 

both to issues with degenerate inputs and with intermediate 

results of high complexity [19]. 

B. Sliding Time Window 

A time window is a time interval [t, t + τ) in which the 

trajectory is considered as a segment. We need time window 

in mobility observation because usually the locational data 

span throughout days or even months. To make sense of the 

data, smaller time window, with less data, could be more 

meaningful and simplify the process of analysis. 

The value of τ usually does not change, which gives a 

series of constant length time windows. Moreover, the time 

window needs to ―slide‖ forward as time evolves. Since 

trajectory data is spatial-temporal, sliding time windows help 

us to understand its ―temporal‖ property. A single time 

window only shows static location of the object in the 

particular time interval, while a series of sliding time 

windows demonstrate how the object is moving around over 

time. We denote i continuous sliding time windows as  

       ,,,,,,, 2211   ii tttttt . 

For convenience of discussion, it is usually by default that 

the amount of the sliding window advances, represented by 

112   kk ttttt  

is a constant. 

To avoid loss of information, we will need tΔ ≤ τ, 

otherwise data between two consecutive times windows 

would not be able to be captured. In particular, we say it’s an 

overlapping sliding time window setup if tΔ < τ, and a 

non-overlapping setup if tΔ = τ. Overlapping means 

redundancy in the data to be analyzed. It could result in larger 

data size and more processing time, but it is also a smoothing 

technique and able to avoid sudden ―jump‖ between the time 

windows. In our experiment we found that tΔ ≈ 1/3 τ usually 

gives us a smooth transition among the time windows. 

However, it is only an empirical study, and the result is only 

applicable to our specific data sets and problems.  

Using sliding window and convex hull algorithm, the 

trajectory is transformed to a series of polygons; each 

corresponds to the object’s movement in a particular time 

window. In next section we discuss how the property of 

trajectory and user behavior can be derived from the 

geometric properties of the convex hull polygons and the 

sliding time windows. 

 

IV. DISCOVER USER BEHAVIOR 

The objective of TaP is to observe objects’ movement and 

extract useful information. In this section, we demonstrate 

how movement information can be extracted from the 

polygons derived from convex hull algorithm, and how their 

geometric properties can be used to derive properties of the 

trajectory. To fully understand the object’s movement, 

usually we need more than one of the trajectory properties to 

make conclusion. In this section, we demonstrate how to find 

out four useful properties, namely active area, traveling 

pattern, similarity, and randomness, of the objects. We note 

that in the following examples certain threshold maybe 

required to classify the trajectory type. However, as the exact 

value of the threshold is case-dependent, we will not be able 

to specify suitable values of them in this section.  

A. Active Area 

One of the most interesting topic in movement observation 

is to understand the active area of the object, i.e. where the 

object stop and do something. If the object is human, active 

area would reflect where she/he lives, works or do shopping 

(which will be discussed in detail in Section V). If the object 

is a mobile sensor, it could show where is the place that the 

sensor is trapped, or has more data to process. If the object is 

an animal, the active area would demonstrate the living area 

distribution of it, which would be crucial for some zoologists.  

In trajectory mining algorithms it is usually done from a 

signal density perspective-places with denser locational 

records are considered as active areas. But the effectiveness 

of this kind of solutions hugely depends on the source 

locational data quality. If the object does not sense its 

location frequently, there would not be a clear different in 

signal density between active area and non-active area. 

Moreover, it could be difficult to find out the boundary of the 

active area from the signal density. To use these solution, we 

usually need to pre-define area shapes (such as grids or 

hexagons) to calculate the density. Thus the exact location of 

the active area can hardly be determined.  
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Fig. 3. Examples of active area detection. 

 

When the trajectory is represented as polygons in TaP, the 

area size of a polygon is the area that the object has covered 

in the corresponding time window. Since the sliding time 

window has constant size, smaller polygons indicate the fact 

that the object spent the same amount of time within a smaller 

area. This could be a good indication of active area-same 

time window length, but less movement, as shown in Fig. 3 

by P1. We note that this has nothing to do with the density of 

the signal, because we do not consider how many records are 

found within the polygon, but only interested in the boundary 

and size of it. In this way, active area in any shape can be 

found.  

There can be extreme cases like shown in Fig. 3 by P2, 

where area size could be small even if the location records are 

far apart. To rule out this kind of exception, a secondary 

polygon property can be considered: such as number of edges, 

polygon perimeter, and edge length variance or deviation. If 

the polygon has few edges with long perimeter and large 

length deviation, it means the polygon’s shape is similar to P2, 

and thus cannot be identified as an active area.  

Another special case is when the polygon size is 0. It 

means only one or two locational records are found in the 

time window. We cannot conclude the active area in this case. 

In this case, we can extend the time window size so that more 

data points show up in the time window and better conclusion 

could be drawn.  

B. Travel Patterns 

How the object from one active area to another, i.e. the 

travel pattern is also often of great interests in mobility 

observation studies. There could be two scenarios where the 

polygon in a particular time window could indicate the object 

is traveling. 
 

 
Fig. 4. Polygons sizes with different values of t. 

 

 
Fig. 5. Similarity between polygons Pi and Pj。 

 

Firstly, as demonstrate in the previous section, polygons 

with small size, but long perimeter and large edge length 

variation is a result of traveling object. The long edge in this 

kind of polygon shows the fact that the object could be 

traveling during the time window and the short edges actually 

gives us info about the destination and starting point of the 

traveling. Usually in this scenario, there are few data points 

on the edge to show the route of traveling, and more 

information such as transportation means and speed is hard to 

be determined.  

Secondly, convex hull polygons with large size could also 

be a good indication that the object is traveling. We can 

understand it as a large active area, in which the object goes 

to multiple places. When we observe that some polygons 

with bigger size appear between two or several smaller 

polygons, we understand the user is traveling among the 

active areas. Fig. 4 shows how the polygon size evolves with 

the value of time window starting point. Those higher values 

indicate ―traveling‖ while the lower parts refer to ―staying‖.   

C. Similarity 

Moving objects can usually be clustered by their trajectory 

similarity, which is another interesting field of study in 

mobility observation. In existing works, it is measured by the 

closeness of the locational data points. Again because of the 

signal quality, in particular the time of taking the records, the 

solution could be less effective than it sounds.  

For example in Fig. 5, object i and j move on their 

corresponding routes, which are close to each other. 

However, due to the difference in timing, the locational data 

points are not close, and thus the existing solutions may not 

be able to recognize them as similar trajectories. TaP 

converts their trajectories to polygons, and similarity can be 

estimated by the overlapping area size of the two polygons 

constructed by i and j’s trajectories, respectively. As shown 

in Fig. 5, the high percentage of overlapping indicates the 

two trajectories are similar to each other. Quantitatively, a 

similarity index S can be measured as the size of overlapping 

area divided by the total area covered by the two polygons, 

written as  

21

21

PP

PP

A

A
S




  

where A denotes the area size of the polygon. A value of S 

close to 1 will indicate the given polygons are similar to each 

other. We note the measure of similarity index can be easily 

extended to multiple objects by comparing polygon sizes of 

the same time window across different ID’s.  
 

 
Fig. 6. Randomness reflected by polygon sizes. 

 

The accuracy and validity of similarity could be improved 

if we put the value of t into consideration, too. As what we 

have done for travel pattern analysis in the previous section, 
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seeing how the polygon evolve over time gives us a better 

understanding to the trajectories. If two objects have 

polygons with high similarity index over several consecutive 

time windows, it could be more evident that these two objects 

travel in similar pattern.  

D. Randomness 

Objects may or may not move randomly. Non-random 

movement means the object has certain purpose which may 

be reflected by the mobility pattern. Finding out the 

randomness of an object could lead to useful use cases such 

as suspect behavior detection and intention detection. As far 

as we came across in our research, we haven’t see any 

existing trajectory data mining techniques can measure the 

randomness of the objects.  

Thanks to many previous sound works such as [20] on the 

property of convex hull, we have the expect size of the 

convex hull formed by the trace when the object is moving in 

certain mobility model, such as Brownian motion, random 

walk or Levi walk etc. [21]. For each model, the expected 

size of convex hull will be a function of time and speed. That 

is to say, if we can estimate the speed of the object3, we can 

calculate a theoretic value for the convex hull size assuming 

the object is moving in certain mobility model. This theoretic 

value serves as a benchmark. By comparing the real convex 

hull size with this benchmark, we can evaluate how close the 

object’s moving pattern is to the model in our assumption. 

Usually purposeful movement will result in smaller convex 

hull size. In Fig. 6, we show how the three objects movement 

could be classified based on their randomness: object i being 

the most random, as its convex size is close to Brownian 

motion benchmark; object j and l show certain degree of 

purposeful movement, with l less random than j.  

 

V. CASE STUDY-LIFESTYLE DISCOVERY 

TaP is tested with multiple locational data sets, with 

different positioning techniques. In this paper we discuss one 

of them: mobile device signal location data set. It’s 7-days 

data of a city’s mobile devices. This data set is available for 

many researchers, but few of them could really make sense 

out of it, due to the following challenges: 

1) The positioning technique for this data set is not GPS or 

signal triangulation. Each entry is a timestamp with the 

location of the base station that the mobile device is 

connecting to. The error could be hundreds of meters. Fig. 

7 shows an example where a device is staying stationary 

but its connection is shown to be all over the place.  

2) Each entry is entered to the data set when the device 

makes connection to the base station. It could be a 

―keep-alive‖ beacon, a phone call, a sms, or data 

connection etc.. Thus the timely frequency of a single 

device could be quite low. In pre-processing, we have 

filtered out some extremely infrequent devices, but it is 

still common for a device to have as low as 1 or 2 entries 

per hour.  

 
3 It is usually not that difficult: 5km/h for pedestrian, 50km/h for vehicles 

in city streets etc.. 

 
Fig. 7. Actual vs. recorded (base station) locations. 

 

We set up TaP as τ = 3hr and t = 1hr. There are 1500 

devices in the original data set. After filtering out infrequent 

users, we take 1028 devices as input. We firstly found the 

active areas of the devices. We use a threshold of 300m2 to 

define active areas. Moreover, we find the repeated active 

area during the 7 days period as regular areas, which may 

indicate places people who carry the mobile device 

frequently visits and do something. Typically, they will be 

the home location or work location of the user of the mobile 

device. The results are plotted in Fig. 8, where three 

representative users are plotted and their regular areas are 

marked with red color. 

 User i has two frequent locations as shown in Fig. 8 a). 

From timestamps of the records (not shown in the figure), 

we found that the user goes to one of these two places at 

night, and visits the other during day time (work hour). We 

may derive that these two places being his home, and work 

place, respectively. 

 User j has multiple frequent locations-one being his home 

and he/she visits multiple places during work hour as 

plotted in Fig. 8 b). This could be a result of his/her 

work-goes multiple places to visit customer. 

 User l has only one frequent location-home, as depicted in 

Fig. 8 c). His/her locational results are all over the city and 

do not show any other regular active area. One possible 

job of this user is a taxi driver, who go around the city and 

only returns home at night. 

Another even more interesting finding is that we cluster 

the users based on how the size of their convex hull polygon 

change over time. During this 7 day period, 166 time 

windows are formed and 166 corresponding polygons are 

found by TaP. We use k-means algorithm on these 

166-dimensional data to cluster the users to 5 groups. We plot 

the mean size of these polygons against the starting point of 

the time window in Fig. 9. The percentage of users belong to 

each cluster can be found in Fig. 10. 

We understand that large polygon size means the user is 

traveling. Therefore we can clearly observe that some users 

have peaks in morning and evening rush hour, when they are 

going to work and going home, as pointed out by ―A‖ in the 

figure. On the other hand, when the users stop moving and 

stay put, their polygon size reduce. We can thus see how the 

users stay at work or have lunch break in the middle of the 

day, as pointed out by ―B‖. We can also see from the t 

dimension (x axis of the figure) that different user can be 

active during different time of the day, some in the day time 

and some at night, as pointed out by ―C‖. 
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 a) User l                                                              b)

 

User j                                                            c) User i

 Fig. 8.
 
Frequent

 
location

 
of users.

 

 Fig. 9.
 
Clusters based on polygon area

 
size over time.

 

In particular, six clusters can be identified: 

1) Regular work far away from home 

2) Regular work close to home 

3) Almost stationary (home workers, etc.) 

4) All-day travellers (sales persons, etc.) 

5) All-day travellers with lunch break (drivers, etc.) 

6) Long-distance night-travellers (taxis, etc.) 

This result is significant — we classified the users based 

on their behaviour using TaP, despite of the inaccuracy and 

inconsistency of the source locational data. Moreover, this 

solution is extremely outstanding in one feature: we do not 

need to know the exact location of the user to study his/her 

lifestyle. The polygon size is irrelevant to the actual location. 

In this way, users’ privacy could be preserved and 

confidential information would not be leaked in the study. 

 

 
Fig. 10. Pie chart of cluster membership. 

 

VI. CONCLUSION 

In this work, we have proposed a new scheme to study 

locational data and dervie user behavior patterns, namely 

Trajectory as Polygons (TaP). It uses two techniques: sliding 

time window, and convex hull algorithm to convert objects’ 

trajectories to a series of polygons. We have shown that 

trajectory properties can be extracted from the geometric 

properties of the polygons, and the movement patterns of the 

objects can thus be observed. With the case study of mobile 

device locational data, we show that TaP can be used 

effectively to study users’ behavior and lifestyle. Moreover, 

it tolerates errors such as signal inaccuracy and varying 

frequency, and preserves users’ private information hidden to 

the outside. 

For future directions, we are extending TaP to more kinds 

of locational data studies. We also want to formulate the 

relationship between trajectory property and polygon 

geometric properties, so that the analysis could be carried out 

in a systematic way.  
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