
  

 

 

 

 

I. INTRODUCTION 

Influenza is an infectious disease caused by influenza virus 

and transmitted among humans. It can be transmitted via 

direct contact, indirect contact through contaminated objects, 

as well as droplets and aerosols resulting from coughs or 

sneezes. Despite vaccination and other prevention and 

control efforts, influenza mortality, morbidity and economic 

burden remains significant. Worldwide and annually, 

influenza infection is between 5-15% of the population, and 

mortality can reach up to 500,000 [1]. In fact, vaccination can 

only offer a tempolary immunity to the disease. Thus, once a 

vaccine wanes from the body of the vaccinated person, the 

person becomes susceptible to the disease again. Hence, it is 

necessary to develop a framework that could predict the 

optimal level of vaccine coverage needed to prevent the 

spread of an endemic. 

Mathematical modeling of the spread of influenza can play 

an important role in providing deeper insights into the 

aforementioned transmission dynamics of diseases and to 

evaluate different control strategies (see, for instance, [2]-[7], 

[8]. Samsuzzoha et al. [6] analyzed an influenza epidemic 

model based on the sensitivity indices of the basic 

reproductive number and the endemic point of equilibrium to 

the parameters, The result showed that the basic reproduction 

number is the most sensitive to the transmission rate of the 

disease. However, this work has not been done in terms of the 

mathematical modeling.   The aim of this paper is to provide a 
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qualitative study of the influenza model with vaccination 

proposed by Samsuzzoha et al. [6] for predicting the optimal 

vaccination coverage needed to ensure that the disease does 

not spread and to determine the important of the epidemic 

model parameters.  

The model monitors the dynamics of the populations of 

susceptible, S, vaccinated, V, exposed, E, infective, I and 

recovered, R, which is represented by the following system:  
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where     N S V E I R  be the total population. The 

biological meaning of the all parameters in (1) and chosen 

values of these parameters are given in the Table I. 

 

II. ANALYSIS OF THE MODEL 

A. Dimensionless  

To reduce the model (1) in terms of the dimensionless 

proportions of susceptible, vaccinated, exposed, infectious 

and recovered populations, let  
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After some manipulations and replacing s by S, v by V, e by 

E, I by I and 
1r by R, the system (1) can writen as 
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This allows us to attack (1) by studying the system (2). 

From biological considerations, we study (2) in the closed set 
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where 5

 denotes the non-negative cone and its lower 

dimensional faces. It can be verified that T is positively 

invariant with respect to (2). Hence, it is sufficient to 

consider the dynamics of the flow generated by models (2) in 

T. 
 

TABLE I: MODEL PARAMETERS [5] 

Parameters Description Value 

  Contact rate 0.514 

E
 Ability to cause infection by exposed 

individuals 
0.250 

I
 Ability to cause infection by infectious 

individuals 
1.000 

V
 Ability to cause infection by vaccination 

individuals 
0.1 

  Rate of latency 0.500 

  Rate of clinically ill 0.200 

  Rate of duration of immunity loss 1/365 

  Natural mortality rate 85.5 10  

r  Birth rate 57.140 10  

  Recovery rate of latents 41.857 10  

  Flu induced mortality rate 69.3 10  

  Rate of susceptible  1/365 

  Rate of vaccination Variable 

 

B. Disease-Free Equilibrium (DFE) 

The model (2) has a DFE, obtained by setting all 

derivatives in the system (2) to zero,  given by 
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The linear stability of 0P is established using the next 

generation operator method [7] as follows. The next 

generation matrices, F and V, are given by 
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respectively. 

Letting 1( ) vacR FV , it follows that 
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 is the basic reproductive 

number of infection for the vaccination-free model ( 0  ). 

According the next generation operator method [9], the 

local stability of the DFE, 0P , is based on whether or not 
1( ) FV <1, then all eigenvalues of the linearized version of 

the system (2) have negative real parts, so that the DFE is 

locally asymptotically stable (LAS). For 1( ) FV >1, at least 

one of the eigenvalues has a positive real part, thus, the DFE 

is unstable in this case. Consequently, the following is 

established by using Theorem 2 of [9]. 

Lemma 1: The disease free equilibrium, 0P , of the system 

(1) is locally asymptotically stable if 
vacR < 1 and unstable if  

vacR > 1.  

C. Endemic Equilibrium  

Let * * * * * *( , , , , )P S V E I R  be endemic equilibrium of the 

model (2). Since the endemic equilibrium of the system (2) 

can not be written in the closed form, then, for convenient, 

the endemic equilibrium (that is, there exists at least one of 

infected components which is non-zero) is obtained by 

solving the model (1) with the assumption   r as in the 

following steps. Let 
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*
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represents the force of infection at steady state. By setting all 

derivatives in the model (1) equal to zero and solving the 

state variables of the model in terms of *G yield 
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Substituting (5) into the expression for *G  in (5) and 

simplifying, gives the equation: 

* *2 *

0 0 0( ) 0G a G b G c                                    (7) 

where 
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The quantity 
VACR is the basic reproduction number of the 

model (1). It measures the average number of secondary 

infection cases produced by an infectious individual during 

its entire infectious period. The local stability result in 

Lemma 1 implies that for 1,VACR the total number of 

infectious individual in the population can be reduced to zero. 

This verifies in Fig. 1. Therefore, in the event of an epidemic, 

the theoretical determination of conditions that can make 

VACR less than unity is of great public health interest.



  

Clearly, * 0;G  corresponds to the diseases from 

equilibrium 0P  given in (3). 

For * 0;G  the positive equilibrium of the model (1) can 

be obtained by solving   

  
*2 *

0 0 0 0  a G b G c                                   (8) 

 

for *G and substituting the result into (5). 

The analysis of (8) is Theorem 1. 

Theorem 1: The model (2) has an unique endemic 

equilibrium, *P , whenever 1.VACR  

D. The Optimal Vaccine Coverage Level 

The epidemiological implication of Lemma 1 is that if 

model parameters can be selected (either via vaccination or 

other control measures) such that the basic reproductive 

number,
VACR  is less than unity, then the disease will be 

eradicated from the community. The effect of vaccinated rate, 

 , on 
VACR  is investigated by using sensitivity analysis (i.e., 

differentiating 
VACR  partially with respect to control 

parameter  ). It is found that  
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from which it follows that 
VACR  is decreasing function of  . 

It is clear that vaccination is critically important in making 

VACR  less than unity. This implies that vaccination to 

susceptible populations will reduce number of infections 

down. 

From the definition of 
VACR  in (3), it can be seen that if 
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then 1VACR . Since 
VACR  is a decreasing function of  , it 

follows that if   C
 then 1VACR . Thus, the condition for 

disease eradication is satisfied if   C
 and C

 is called the 

optimal vaccine coverage level needed for disease 

eradication. 

E. The Effect of the Rate of Recovery () Latency (k) and 

Vaccination-Induced Immunity Loss () on RVAC  

By differentiating 
VACR  partially with respect to control 

parameters ,    and  , respectively, yield 
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Clearly, 
VACR  is decreasing function of  and  , see (11) 

and (12), respectively. Whereas 
VACR  is increasing function 

of  , see (13). 

 

III. NUMERICAL SIMULATIONS  

To observe the dynamic behavior of the model, the system 

(1) is integrated numerically by using fourth order 

Rungge-Kutta method with the parameter values in Table I , 

N = 1,000,000 and various value of  . The initial conditions 

[4] are 

 

(0) 0.799, (0) 0.197, (0) 0, (0) 0.004, (0) 0.    S V E I R  

 

With parametervalues in Table I, the threshold vaccination 

coverage or critical vaccination parameter is 0.00715 c
.  

Table II depicts the variables of the model at steady-state as a 

function of   and 
VACR . It is clear from this table that when 

the vaccination coverage level ( ) increases, the value of 

VACR  decreases. The result verify that the endemic 

equilibrium, * * * * * *( , , , , )P S V E I R , (that is the number of 

exposed ( *E ) and infectious ( *I ) individuals are not zero) is 

stable if the vaccination coverage level (  )is below the 

threshold C
. Thus, the disease will persist in the population 

since 
VACR is greater than unity. The profiles of infected 

populations for 0,0.003,0.005.  are depicted in Fig. 2. The 

result show, as  increases, the number of infectious 

individual decreases and the duration of outbreak is delayed 

before convergence to the corresponding endemic 

equilibrium *P as shown in Table II. However, when   is 

increased to values greater than C
, such as 0.0072,   

Table II confirms that the disease-free equilibrium ( 0P ) is 

stable (since 
VACR  is less than unity in this case) and the 

infected population (the sum of exposed and infected 

individuals) vanishes in time. This leads to the eradication of 

the disease from the community. These simulation results are 

in line with  Lemma1 in Section II. 
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Fig. 1. Profile of the propotion of infectious individuals using 

0,0.003,0.005.   

 

 
Fig. 2. Profile of the propotion of infectious individuals using 

0.0072.    

 

The effect of the recovery rate of latent, recovery rate of 

infectious and vaccination-induced immunity loss rate are 

investigated using the parameter values in Table I, 0.001.   

and vary the parameters  ,   and  , respectively. The 

results are tabulated in Table III-Table V. Table III and Table 

IV show that the number of infectious individuals decrease as 

  and   increase. Table V also show that increasing the 

duration of the loss of immunity induced by vaccination 

increase the number of of infectious individuals because it 

reduces the threshold vaccination coverage ( c ) which is 

critically important for the success of public health strategies 

for controlling an epidemic. 
 

TABLE II: EFFECT OF VACCINATION COVERAGE ( ) ON 
VACR  AND 

* * * * *, , , ,S V E I R  AT STEADY STATE 

  
vacR  *S    

*V  
*E  

*I  
*R  

0 2.82 354,045 0 3,562 8,900 633,493 

0.003 1.51 322,759 312,855 2,009 5,021 357,356 

0.005 1.19 302,812 512,349 1,019 2,546 181,274 

0.007 1.01 283,657 703,902 68 171 12,202 

0.0071 1.00 282,718 713,261 22 55 3,944 

0.0072 0.99 280,800 719,200 0 0 0 

 

TABLE III: EFFECT OF RECOVERY RATE OF LATENTS ( )  ON 
VACR  

AND
* * * * *, , , ,S V E I R  AT STEADY STATE 

  vacR  *S  
*V  *E  

*I  
*R  

0 2.15 343,316 105,952 3,037 7,591 540,104 

0.1 1.79 411,447 132,370 2,103 5,256 448,824 

0.3 1.34 547,613 186,154 924 2,310 262,999 

0.5 

0.55 

1.07 

1.02 

683,706 

717,723 

240,667 

254,368 

210 

74 

526 

185 

74,891 

27,650 

0.6 0.98 737,610 262,390 0 0 0 

TABLE IV: EFFECT OF RECOVERY RATE OF INFECTIOUS ( )  ON 
VACR  

AND
* * * * *, , , ,S V E I R  AT STEADY STATE 

  
vacR  *S    

*V  
*E  

*I  
*R  

0.1 4.11 180,939 45,862 4,206 21,017 747,976 

0.2 2.15 343,444 106,001 3,035 7,586 539,934 

0.3 1.50 491,523 163,890 1,908 3,180 339,499 

0.4 1.17 627,159 217,960 859 1,074 152,948 

0.45 1.06 690,806 243,529 364 405 64,896 

0.5 0.98 737,610 262,390 0 0 0 

 

TABLE V: EFFECT OF RATE OF VACCINATION-INDUCED IMMUNITY 

LOSS ( )  ON 
VACR  AND

* * * * *, , , ,S V E I R  AT STEADY STATE 

  
vacR  *S    

*V  
*E  

*I  
*R  

0.0001 0.65 146,320 853,680 0 0 0 

0.0002 0.82 213,465 786,535 0 0 0 

0.0003 0.97 270,818 729,182 0 0 0 

0.00035 1.03 297,987 560,569 779 1,948 138,717 

0.0004 1.10 306,101 479,436 1,182 2,955 210,326 

 

IV. CONCLUSION 

An influenza model with vaccination presented in [5] is 

analyzed to gain insight into their dynamical features and 

used to monitor transmission dynamics in a population. The 

study shows the following: 

1) Detailed local stability analysis of the model reveals that 

the disease-free equilibrium is locally asymptotically 

stable when 1VACR  and unstable when 1.VACR  

2) The vaccination coverage level, ,C
 is defined and is 

given by  
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where 
0R is the reproductive number of infection for the 

vaccination-free model ( 0  ).  

 

4) The relative importance parameters in the transmission 

are tabulated in Tables I-V. These results , , ,     are 

the sensitive parameters for * * * * *, , , ,S V E I R . The results 

also show that the use of vaccines that offer life-long 

protection is a crucial public health objective for disease 

control or eradication. This is especially critical in 

countries where finances play a critical role in the 

number of people who receive vaccines. 
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3) The reproductive number 
VACR is less than one provided 

the vaccination coverage level exceeds a certain 

threshold .C This result predicts in Table II. 

Meanwhile, the endemic equilibrium is stable if the 

vaccination coverage level (  ) is less than C , see 

Table II and Fig. 2. Meanwhile, the endemic equilibrium 

is stable if the vaccination coverage level ( ) is less 

than C
, see Table II and Fig. 1.
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