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Abstract—The Hall resistivity is found to become a function 

of spin. For positive spin, one value is found but for negative 

sign in the spin, another value occurs. In this way, there is never 

only one value of the resistivity but there is doubling of values. 

The value of the von Klitzing’s constant is a special case of more 

general dependence of resistivity on the spin. We investigate the 

effect of Landau levels. For extreme quantum limit, n=0, the 

effective charge of the electron becomes (1/2)ge. The fractional 

charge arises for finite value of the angular momentum. There 

is a formation of spin clusters. As the field increases, there is a 

phase transition from spin ½ to spin 3/2 so that g value becomes 

4 and various values of n in Landau levels, g(n+1/2), form 

plateaus in the Hall resistivity. For finite values of the orbital 

angular momenta, many fractional charges emerge. The 

fractional as well as the integral values of the charge are in full 

agreement with the experimental data. The generalized 

constant is h/[(1/2)ge]e which under special conditions becomes 

h/e
2
 which is the von Klitzing’s constant. 

 

Index Terms—Von Klitzing’s constant, g values, charge 

square and Planck’s contant ratio, angular momentum. 

 

I. INTRODUCTION  

The resistivity at the plateaus is quantized in the units of 

h/e2. Usually, the electron is associated with the 

electromagnetic field, the same way as the charge density is, 

in the Maxwell equations. The electric and magnetic field 

vectors are linked to the charge density. However, the charge 

is defined in such a way that the effect of self electromagnetic 

fields is already included in the value of the charge, 

 

e = 1.602 176 487(40) × 10-19 Coulomb           (1) 

 

The Planck’s constant is associated with the frequency or 

the wave length of a particle, 

 

h=6.626 068  96(33) ×10-34   Js.                      (2) 

 

It is a matter of a pencil calculation to show that, 

 

h/e2 = 258 12.807 5651 Ohm.                      (3) 

 

This is called “one von  Klitzing” constant because it was 

first measured by von Klitzing, Dorda and Pepper [1]. In their 

paper, the value given is 25813 . The calculation of h/e2 

does not require that there should be two dimensionality or 

there should be Landau levels. However, the experimental 

value requires the Hall geometry. The value of h/e2, does not 

require any electrodynamic correction. The fine structure 

 
   

 

 

 

constant is defined in such a way that, 

h/e2 = o c/(2)                                  (4) 

 

where o = 4 × 10-7 H/m and c is the velocity of light. The 

above expression is 
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4

2
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where o=1/(oc
2). At the present time, the value of the 

inverse fine structure constant [2] is, 1/ = 137.035 999 

084(51) which is another way of writing the value of h/e2. 

These are one and the same and not two different quantities. 

How the accuracy has become so high is another question but 

in 1965, the value was 137.0388(6). The gyromagnetic ratio 

of the electron is given by [2], 

g/2= 1.001 159 652 180 73(28)               (6) 

 

This value is related to the fine structure constant, 

 

g/2 = 1 + C2(/) .                           (7) 

 

  

However, g is subject to the electrodynamical corrections 

whereas h/e2 is not. The electron is associated with the 

electromagnetic field because of the charge. The 

electromagnetic field is quantized in terms of photons. 

Therefore, there are many Feynmann diagrams which 

describe the electron-photon interaction so that many more 

terms arise in (7) which have to be carefully added. The 

Lande’s formula gives, 

 

g/2 = 1                                        (8) 

 

for l = 0 and the electrodynamic correction is, 

 

  

 

 

  

 

The g value can be separated into electrodynamic part and 

Lande’s part but in the case of the value of the charge such a 

separation is not available. The Lande’s formula does not 

contain the electrodynamics but it contains the angular 

momenta, L, S and J. If there is any correction to the value of 

the charge due to the electrodynamics, it is already included 

in the tabulated value of e. There is a problem of gauge 
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In this way, g is related to  and  determines h/e2. 
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invariance according to which h/e is fixed and only one e in 

h/e2 is subject to measurement. If both values of e are equal 

we get the h/e2. In our theory [3]-[8] the resistivity is, 

 

2

2

1
ge

h
                                     (11) 

 

where (1/2)g does not include the electrodynamic correction. 

In fact, such electrodynamic corrections are already included 

in h/e2. We use the definition g=(2j+1)/(2l+1) so that for j =l 

 s, there are two values of g which we call g , 

 

g = 
12

1)(2





l

sl
.                              (12) 

 

 

  

 

 g = 2( s)+1.                                     (13) 

 

For s=1/2 for + sign, g+=2 so that (1/2)g+=1 and the result 

(11) gives h/e2. For s=1/2 and negative sign, g-=0 and we get 

  , or the conductivity, 0. We call these values as von 

Klitzing constants, which now have two values, 

 

RK= h/e2                                         (14) 

 

and 

 

RK=    .                                        (15) 

  

For l =1, s=1/2 for positive sign, (12) gives, 

 

 g+= 
3

4

3

1)
2

1
1(2


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                            (16) 

 

or (1/2)g+=2/3, which makes von Klitzing value, 

 

RK=

2

3

2
e

h .                                        (17) 

 

For l =1, s=1/2 and negative sign in (12), 

 

g-=
3

2

3
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                             (18) 

 

or (1/2)g-=1/3 so that the von Klitzing resistivity becomes, 

 

RK=

2

3

1
e

h
                                          (19) 

In this way many values of the Klitzing constant can be 

predicted. The fractional values calculated here agree with 

the measured values of Tsui, Stormer and Gossard [9] as well 

as grapheme [10]. 

 

II. THE THEORY 

The eigen values of the harmonic oscillator are given by, 

 

En= )
2

1
( n                                  (20) 

 

where, 

 

.
2

B
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g
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For n = 0, Eo=(1/2)   so that the frequency becomes, 

 

Eo= B
mc

e
g




2

1

2

1
                          (22) 

 

This means that we can replace e by (1/2)ge or e*=(1/2)ge. 

The von Klitzing resistivity now becomes, 

 

RK=

2

2

1
eg

h
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                                            (23) 

where we can generate a lot of values by changing l and s but 

it is clear that there are pairwise values, due to  and not  

single value. There is a doubling of values. From (12) we can 

calculate the values of g  for various values of l and s which 

gives values of the resistivity. We use the harmonic oscillator 

type expression, so that (23) becomes, 

 

RK =

2)
2

1
( egn

h
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 .                         (24) 

 

For, n = 0, 1, 2, 3, 4, 5, 6, the values of n+(1/2) are, 0, 3/2, 

5/2, 7/2, 9/2,  … 

For S=3/2, l =0 we have for the positive sign, g =2(3/2) 

+1 = 4(for + sign). The values of g+(n+1/2) are now, 

 

0, 6, 10, 14, 18,  …                            (25) 

 

This series is actually observed in the experimental data. 

As we can see, there is no need of random topological 

numbers, no need of Chern numbers and no need of 

Hofstadter butterfly [10]. The growth of the series such as 

that in (25) is not a fractal growth and it does not have a 

constant chemical length. 

The g values.  

The electron produces its own electromagnetic field which 

changes the g value. This is a small field but quite noticeable 

in ordinary electron spin resonance experiments. The 

magnetic moment of the electron is, 

 

= -
2/2

1



S
g B                               (26) 
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Note that this value of g, does not have the 

electrodynamic correction. The expressions (4), (5) and (7) 

suggest that h/e2 is equivalent to  and (7) relates   to g

value. When l = 0,



  

where S is the spin. Usually S=1/2 but in solid state, electron 

clusters are formed so that it is not limited to ½ and it may be 

1,  3/2 or 5/2, etc. The accurate value of g/2 is needed to 

obtain the magnetic moment of the electron. Therefore, it is 

important to calculate the energy contributions of the 

electron-photon interaction which can be used to redefine the 

g value. Hence, an expansion has been considered, 

 

2 3

2 4 6

1
1 ( / ) ( / ) ( / )

2
g c c c           

4 5

8 10( / ) ( / ) ...c c                           (27) 

           

in which all of the coefficients have been carefully calculated 

to find, 

 

-1= 137.035 999 084(33)                        (28) 

 

These calculations are limited to l =0, s=1/2 only. 

Therefore, two values of g are not obtained. Even then there 

are two values due to the  in (12). One of these values is zero 

and the other is 2 besides the electrodynamic correction 

which is known for l =0. Let us take only 2 terms and 

substitute 0 and 2 for the g value. Then we obtain two 

equations, 

 

)/(1)2(
2

1 )()(

2  
 cged

                       (29a) 

)/(1)0(
2

1 )()(

2  
 cged

                     (29b) 

leaving out small terms. The solution of the second of these 

gives negative value for 
)()(

2


c , which means that 

)(

2


c  

is not equal to 
)(

2


c . Therefore, the values of the coefficients 

depend on the g values. The sign of the spin is contained in 

the g value so that both the positive as well as negative spin 

values are important.   

 
The  resistivity at n = 0 in eq. (24) for positive sign of the 

spin is, 

 =

2

2

1
eg

h



                                         (30) 

where g  must be taken from (12) and it is free from the 

electrodynamic effects. We list some of the values which 

give the quantization of the resistivity [10], [11]: 

1) h= 6.626068 960 (330) × 10-34  Js   

2) e=1.602 176 487(40) × 10-19 Coulomb   

3) h/e2= 25812.807 5651 Ohm [pencil calculation] 

4) (1/2)g=1.001 159 652 180 73(28) [Hanneke et al. 2008] 

5) h/e2= 25812.807557(18) Ohm [ CODATA 2006] [11].  

By taking only two terms from the right hand side of (27), 

we find that charge can be completely eliminated,  

)1
2

)(4(
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g
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e
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
                           (31) 

but the two values of the resistivity are exactly equal to each 

other. The error in the experimental value of 25812.8  is 

perhaps not more than 0.20 . The expression (12) gives 

the doubling of values due to  signs and gives the correct 

fractional values of the charges which agree with the 

measured values.  

                                 

There is a special case when (1/2)g=1, 

 

12

2

1

2

1




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l

sl

g                                  (32) 

 

which occurs for l =0, s=+1/2. For this case the resistivity (30) 

is the same as von Klitzing’s value. In cases of finite l  and s, 

the physics of the problem is different from that of von 

Klitzing et al, so that von Klitzing’s constant becomes a 

special case of  “spin-dependent” phenomenon [3]. The 

   

 

2
)(

2

1
eg

h
K



                               (33) 

 

 
Fig. 1. The variation of resistivity as a function of l. The upper curve is (-) 

spin and lower curve is (+) spin. See text eq.(32) 

 

 
Fig. 2. Plot of resistivity as a function of (1/2)g. The continuous line on the 

right hand side of 0.5 has (+) spin and that on the left hand side of 0.5 has (-) 

spin. 

are given in Table I along with the values of g. A plot of K() 

as a function of l is given in Fig. 1. 

At l =0, K=1, we obtain the von Klitzing’s constant. 
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 Two Constants

 The spin density

values of K(+) and K(-) from the expression,



  

Otherwise, there are many values and the von Klitzing 

constant is a special case of more general constants: 

 

K(+) ( l =0, s=1/2) = Von Klitzing’s constant   (34a) 

 

K() ( l 0, s=1/2,  1,  3/2, ,2,  ...) = General constants.  

(34b) 

 

 

  

When (1/2)g=1, we obtain the von Klitzing’s constant, 

otherwise, more general constants exist. 
 

TABLE I: THE VALUES OF VARIOUS CONSTANTS 

S.No. l K(+) K(-) (1/2)g+ (1/2)g- 

1 0 1  1 0 

2 1 3/2 3/1 2/3 1/3 

3 2 5/3 5/2 3/5 2/5 

4 3 7/4 7/3 4/7 3/7 

5 4 9/5 9/4 5/9 4/9 

6 5 11/6 11/5 6/11 5/11 

7 6 13/7 13/6 7/13 6/13 

8 7 15/8 15/7 8/15 7/15 

9 8 17/9 17/8 9/17 8/17 

10 9 19/10 19/9 10/19 9/19 

11  2 2 1/2 1/2 

 

III. TURNING POINTS 

As the gate voltage is increased, the resistivity starts 

turning towards the plateau. This phenomenon can occur 

when spins start turning. When the resistivity is at the Hall 

effect value, away from the plateau region, the electron spin 

starts turning until the area is so adjusted as to satisfy the flux 

quantization, which means that the vortex area becomes an 

integer multiple of flux quanta divided by the field, area = 

no/B. The area in the Hall region is infinite. As the spins turn, 

the area starts reducing from the infinite value to the 

quantized value. 

 

 
Fig. 3. As the gate voltage is increased, the data shows “turning point” before 

reaching the plateau. 

 

The change in resistivity from the turning point to the 

plateau is about 72.7 Ohm compared with h/4e2=6453.201 

Ohm.  

A plot of the resistivity as a function of gate voltage is 

given in Fig. 3. At the turning point, the resistivity is, 

turn = 6471.21                             (35) 

 

compared with the pencil calculation of h/4e2= 6453.03  . 

These two values are off by 18.18 . In order to compare the 

turning point value with the plateau value, we define, 

 

 = turn - plateau                         (36) 

 

   

turn(i=1) is 25884.84  so that,  

 

 = 72.0 .                              (37) 

 

This in principle makes the values of h/ie2 (i=integer). 

int"single electron" type theory is sufficient to obtain the 

value quite uncertain. The experimental uncertainty in the 

value of 25812.8 is only 0.2 but then in principle 

uncertainty is 2.810-3 which is a few parts per thousand. 

The plateau measurement is obviously much more curate 

than the difference between turning point and the plateau. In 

such a case, in principle value will play a dominant role. The 

plateau value can be measured upto eight digits which means 

that the accuracy is 1 part in 108, If that is the case the plateau 

is sharply peaked but the distribution may be extended upto 

the turning point. It is said that the center of a line can be 

located to a large accuracy. That does not mean that there is 

no line width. The line is an envepole of a large number of 

events so that there is a finite width. The accuracy of 

measurements is thus not the accuracy of locating the plateau 

but the location of the turning point. In Laughlin’s work an 

effort is made to obtain this error factor by the calculation of 

correlations. A single electron hype theory is sufficient to 

obtain the values at the plateaus. 

A "single electron" type theory is sufficient to obtain the 

value of e and there are no many-body effects which can 

is not more than  0.2  in 25812.8 , which means that we 

can get the values correct upto ppm [2]. This point is to be 

noted so that we are not carried away from the "single particle 

theory" [3]-[6] of the observed plateau in the Hall resistivity. 
Another observation is that plateaus are formed and 

destroyed as the magnetic field is varied. If there is 

considerable variation in the sample size and temperature, 

more than 101 plateaus can be observed [7]. To reduce the 

problem to a tractable size, we can consider only two plateaus 

and the interventing phase so that as the field is varied, there 

are three phases. The electrons in the intermediate phase are 

subject to the many-body interactions such as Coulomb 

interactions, electron-phonon interactions, interacting 

Landau levels, etc. Hence the problem is to understand the 

phase transition from a many-body interacting phase to a 

single-particle non-interacting phase. The flux quantization 

fixes the area at A=(n'hc)/(e*B) so that we know the area 

occupied by the electrons in the plateau region which is 

defined by the resistivity and the magnetic field, xy=h/ie2, 

where I can be an integer. It is also possible that I is a fraction 

which depends on angular momentum. The area in between 

plateaus need not be the same as in the flux quantization. 

Hence, the area can also be used to demark the phase 

boundaries. The electrons move from the conduction band to 
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A plot of K() as a function of (1/2)g from Table I is given 

in Fig. 2. 
Then the value of plateau is 25812.8075  whereas  

change the value of e [4]. The experimentally measured error 



  

a localized band which is flux quantized. Hence, the 

flux-quantized plateau which belongs to a single-particle 

state is also Anderson localized except that the Anderson 

localization has to be modified for spin.  

We report our study of the phase transitions which occur as 

the resistivity goes from one plateau to another. The 

intermediate phase in between two plateaus, is also important 

because it is associated with a clustering phase. 

 

IV. THE PHASES AS A FUNCTION OF FIELD 

 

 
Fig. 4. Two plateaus and the intervening cluster phase. The plateaus have a 

single particle or small number of particle state whereas the cluster has a lot 

of particles. 

 

We consider a phase diagram which has three phases as 

shown in Fig. 4. The phase-1 is characterized by a plateau at 

1.  The resistivity in this phase is h/(1e
2). Since 1 is exactly 

defined, it corresponds to a single electron with well defined l 

and s values. For a single electron the spin is s=1/2 and it has 

a well defined value of l which gives the orbital angular 

momentum l. In some cases, the single electron is replaced 

by a few electrons so that spin need not be 1/2 but it can be a 

different value such as 1 or 3/2, etc. Since, the charge is fixed 

at e*=1e, it corresponds to a fixed area in which flux is 

quantized. Hence the area is, n'hc/e*B. The value of 1 is 

fixed by [12]-[19], 
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sl

g
e
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In the phase-1, the orbital angular momentum is l1 and the 

spin of a particle is s1. The value of 1 can be zero for l1=0, 

s1=1/2 with negative sign. It can be 1=1 for positive sign and 

s1 =1/2, l1=0, etc. Some other values of   1 are also possible. 

There is a critical point at which the plateau ends, more 

electrons come in the area which expands to form the phase-2 

which is a cluster with area not determined by flux 

quantization but it corresponds to a critical exponent. Since, 

the area is expanding, it may vary as the square of the 

coherence length, 

=o(B-B*)-                              (39) 

where B* is a constant field and  is the critical exponent. 

After some increase in the field, the variation of the 

resistivity as a function of magnetic field becomes constant, 

∂xy/∂B = constant so that its slope can be determined. In this 

region,  

xy = c1 B + c2                             (40) 

and we call it "cluster phase". In this phase, the electrons 

form a cluster. As the field is further increased, the phase-2 

which ithe same as the cluster phase, starts breaking down.  

This starting point is a critical point and then with further 

increase in the field another plateau is built. This another 

plateau is the phase-3 and it has its own l and s2. It is found 

that in going from phase-1 to phase-3, if l increases, then it is 

accompanied with a decrease of s which can be done by 

choosing the negative sign in s. 
 

V. THE PHASES AS A FUNCTION OF TEMPERATURE 

The ∂xy/∂B clearly has two values, one below 10 mK and 

the other from 0.01 K to 1.0 K [20]. From eq.(40) we see that 

∂xy/∂B=c1. This constant c1 is independent of the magnetic 

field but it varies with temperature, c1=c1(T). In the 

temperature range 0.01 - 1.0 K, the shift from phase-1 to 

phase-3 is very smooth at high temperatures of the order of 

500mK and very steep at low temperatures such as 15 mK. 

Hence, it is possible to define a critical exponent in the 

"cluster phase" as, 

 

∂xy/∂B~T-                                         (41) 

 

Such an exponent should occur symmetrically in going 

from phase-1 to phase-2 and in going from phase-2 to 

phase-3. Since, it is a problem of coherence length, it is 

possible that =1/ where  is the exponent of the divergence 

of the coherence length, 

 

  )1(
c

o
T

T
.                             (42) 

 

The experimental data has two values [8], one below 10 

mK and the other between 0.01 to 1.0K. Apparently, 

=1/=0.42 is consistent with the coherence length effect. A 

more interesting problem is found below 10mK. These 

experiments are also more difficult to do because of noise 

induced heating and hence bigger error bars than at higher 

temperatures. In any case, this is a good opportunity to 

measure the radiative effects. At this temperature, the 

phonons are completely eliminated except the zero-point 

vibration so that we expect to see the effect of self 

electromagnetic fields of the electron. The conductivity is 

proportional to the radiative life time of the electron. At this 

temperature, there is a finite life time, usually quite long, so 

that there is a small radiative contribution to the resistivity. In 
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the clustering region, this effect may be important. 

 

VI. LANDAU LEVELS 

The electrons in two dimensions behave like harmonic 

oscillators with eigen values given by c(n+½). Here c is 

the cyclotron frequency and n is an integer. For n=0, (1/2)c 

is the lowest Landau level (LLL). The effective charge of a 

quasiparticle is then, 

 

)
2

1
(

2

1
  ng

e

eeff                               (43) 

 

In g we have to change the orbital magnetic moment by 

changing l and s. The Landau levels are derived for only one  

plateau at a time so that we can tabulate the various effective 

charges. But we cannot go from one Landau level to another.  

The size of the vortex from the Compton wave length is 

3.9113 1510  cm. We assume that one vortex is attached to 

the electron such that only the reduced mass appears in the 

Schroedinger equation. Making the vortex electron pair has 

no effect on the Hall effect. 

 

VII. CONCLUSIONS 

The positions of the plateaus are correctly predicted 

[13]-[20] by the angular momentum theory [1]. The region in 

between plateaus show the formation of clusters of electrons. 

The number of electrons at the plateaus is one or a small 

number. One can go from the plateau to the cluster region by 

scaling as in a phase transition. In that case, the plateau 

region is Anderson localized except that the spin has to be 

treated as in ref.[15]. There are phase transitions type 

characteristics in between plateaus. 
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