
  

 

   

 

 

 

Index Terms—Stokes Stream function, Euler-Poisson 

Darboux equation, Stokes-Helmholtz class, Stokes-Poisson class, 

Bessel cross product.  

 

I. INTRODUCTION 

This is result for which if software and numerical results 

were to be created and verified this would be lead to a 

breakthrough into a phenomenon that has never been 

observed, similar type investigations only being carried out 

by Taylor [1] but in which a closed form analytical solution 

has not been given in the literature. The well known equation 

for the stream function ψ (x, r), of a rotating fluid has been 

examined with a view of choosing a new dependent variable 

in such a way that the differential operator becomes the 

axisymmetric form of the Laplace operator (see for example 

Arfken [2]), this is advantageous since this makes the setting 

up of an equivalent integral formula based on Green’s first 

identity, Roach [3], possible since a singular solution to the 

adjoint equation can be obtained. A suitable choice turns out 

to be the axial component of the velocity vector xu , and for a 

class of flows including solid body rotation, xu , is shown to 

satisfy the Helmholtz equation subject to an oblique 

derivative boundary condition. Stoke’s stream function ψ (x, r) 

for steady axisymmetric swirling flow of an incompressible 

inviscid fluid satisfies the equation:  
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see Pavlika [4], the total Head, H(ψ) (or the total pressure 

function) and the function 
 ruC )( , characterize the nature 

of the flow, and ψ itself must of course take constant values 

on any bounding surfaces. Suitable choices for H(ψ)and 

(ψ)yield a linear equation for ψ. The best known of these is: 
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which in regions of cylindrical flow, where ψ can be regarded 

as independent of x, can represent a rigid rotation of angular 

speed , with uniform axial velocity U (see for example 

Greenspan [5] and Batchelor [6]).  This particular case has 

been the subject of considerable experimental and theoretical 

work. The experiments of Taylor [1] and Long [7] featured 

the flow of rotating fluid in a cylindrical tube past a body on 

the axis. The most general case for which equation (1) is 

linear is easily seen to be that case with: 
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where a, b, c, A and B are constants. Such total pressure and 

swirl velocity profiles find application in the design of axial 

flow Turbomachinery (see for example Thwaites [8]) of 

particular contemporary interest is the flow in the so-called 

“swan neck” duct connecting the compressor (or turbines) in 

a multishaft gas turbine. These annular ducts essentially 

comprise a pair of coaxial cylinders having radii which 

change monotonically along the axis between constant 

upstream and downstream values. This gives:  
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and the corresponding homogeneous equation with a=0 

(which has implications on H of course) is  
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represent conditions in the exit plane of the final blade row of 

the upstream compressor. The profiles can be chosen by the 

compressor designer but are influenced by the feasibility of 

the blade airfoils necessary to produce them, so whereas early 

blade rows had values of H(ψ) and C(ψ) independent of r the 

so-called “free vortex” blading, most modern machines have 

some variation across the annulus. The precise nature of these 

variations is a matter of personal preference, but typically 

H(ψ) is prescribed as linear function in r2. H and C variations 

based on ψ are equally feasible. The analysis of flow through 

the swan-neck can therefore be approached using equation (1) 

and the development described here resulted from attempts to 

reduce the boundary value problem to the solution of an 

integral formula involving only boundary values of the speed 

q. Such reductions hinge on obtaining the so-called 

fundamental solution to the adjoint equation that is suitably 

singular. Equation (1) is not particularly suited to this 

treatment and the following describes a suitable 

reformulation of the boundary value problem. 

In the next section it is shown that the axial component of 

the velocity vector, xu satisfies the axisymmetric form of the 

Helmholtz equation, for a class of slightly less general than 

the ψ linear case, but including the rigid rotation case and 

sufficiently general to offer worthwhile Turbomachinery 

application. Boundary values on xu are obtained that are of 

the oblique derivative type, regular in the Turbomachinery 

case. 

 

II. THE USE OF THE EULER-POISSON-DARBOUX EQUATION 

IN THE TRANSFORMATION TO THE HELMHOLTZ EQUATION. 

In order for any progress to be made to the development to 

an equivalent integral reformulation (see for example Pavlika 

[4] as discussed previously), mention and use of the method 

of recurrence of Weinstein (1952) [3] on the 

Euler-Poisson-Darboux equation (EPD) is made. Weinstein 

solves the singular Cauchy problem for the EPD equation 
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by a technique which included the recurrence formula 
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where 
 ku satisfies equation (4). Consequently if 

 ku satisfies equation (4) then 
 2ku will satisfy the 

equation 
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letting 1k , gives  
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which is the Laplace equation in cylindrical polar coordinates. 

The method of recurrence can be applied to the equation. 
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giving rise to the familiar Helmholtz equation, the dependent 

variable here, u  is of course by equation (5) the term 

 

A

b
u

A

Bby

rrr

F

r
x

211 2








 










  

 

Formula (5) in its application to equation (4) relies on the 

precise form of the right hand side of that equation and the 

absence of functions of t from the left hand side (apart from 

u  itself of course). A direct evaluation shows that:  
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and hence 

 






















 222

2

11
C

d

d

d

dH
r

rr
ux


 

 

which will be linear if  
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in fact defining AbuU xx /2  gives 

02  xx AUU                     (6) 

which is the axisymmetric form of the Helmholtz equation. If 

0A then  

bU x 22  ,                                       (7) 

which is the axisymmetric form of the Poisson equation. 

Flow characterized by equation (6) shall be referred to as the 

Stoke’s-Helmholtz class and flows characterized by equation 

(7) shall be referred to the Stoke’s-Poisson class respectively. 

The case with b=0 leading to the axisymmetric form of the 

Laplace equation will not be investigated.  

 

III. BOUNDARY CONDITIONS FOR UX 

At any point on a streamline take unit vectors s and n, 

tangential and normal as shown in Fig. 3, (see also Fig. 2 and 

Fig. 3 for typical annular duct configurations then 
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Fig. 1. Typical appication of an annular in aerodynamics. 

 

 
Fig. 2. Typical cross section of an annular duct.    

 

 
Fig. 3. Showing the tangential and normal vectors to the curve ψ=constant.  

 

If the equation of the streamline is )(2 xRr   then this 

condition can be written as  
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with l drawn in the direction shown in Fig. 1 the oblique 

derivative form results:  
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For flow of the swan-neck duct type, having known 

approach conditions, the values of ψ are known on the duct 

walls, in fact the inner wall can be assigned the value ψ=0. 

Along either boundary wall therefore the boundary condition 

takes the form  
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where ,  and   are known functions and are bounded if || 

< 
2

  and r >0, which are true of the present application. In 

considering the upstream and downstream conditions, the 

possibility of standing waves must be considered. Such 

waves were exhibited by Taylor [1] and predicted 

theoretically by Long [7]. Analysis similar to that prescribed 

by Batchelor [2] shows that in a flow between coaxial 

cylinders of constant inner and outer radii 1r  and 1r , 

where 0 , n axial wave components can exist in the duct if 
2
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nz  is the nth zero of the 

Bessel cross product )()()()( 1111 zYzJzYzJ   . If such 

waves are not to exits, A must be chosen less than  211 / rz . 

Sample calculation show that such a restriction does not limit 

the rotational components normally designed into 

turbomachinery ducts. Even with non-cylindrical flow, both 

upstream and downstream of the swan-neck, these conditions 

can be used to find the distribution of xu  on planes normal to 

the axis placed suitably, relative to the radius variations of the 

swan-neck itself, and on which )( xu
x

  will be expressed as a 

product of functions in x  and r . The function in x may 

involve circular trigonometric functions and the function in 

r  may involve the Bessel functions )(1 rJ and )(1 rY or the 

modified Bessel functions )(1 rI and )(1 rK all of order one. 

This is investigated further in the next section.   

 

IV. INVESTIGATING THE NATURE OF NON-CYLINDRICAL 

FLOW IN THE REGION BOUNDED BY TWO COAXIAL 

CYLINDERS OF VARYING RADII 

In the following section the possibility of non-cylindrical 

flow including standing waves being set up in the duct is 

investigated. The Stokes Stream function ψ (x, r)for steady 

swirling flow of an incompressible inviscid fluid satisfies 

equation (1), for the Helmholtz class this becomes 
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using separation of variables and letting  
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In order to proceed with the solution it is necessary to put 

F(r)=0 which has implications on )(rC so that:  
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so that X(x) and Y(r) satisfy: 
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Since the left hand side is independent of x and the right 

hand side is independent of r both sides must be equal to a 

constant. If this constant is chosen positive the X(x) will 

involve circular trigonometric functions, if chosen negative it 

will involve hyperbolic functions.  

 

V. POSITIVE SEPARATION CONSTANT 

In this case put k>0 so that   
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which has solutions )(1 J  and )(1 Y , where )(1 J  and 

)(1 Y are the Bessel functions of the first and second kind of 

order 1 respectively and rkA 2/12 )(  .With the general 

solution )()( 11  YEJD kk   where the subscript on the 

constants 
kD and kE denotes dependence on k. The 

boundary conditions for ),( rxN  are 

),( 1rxN = ),( 2rxN = 0, 

which has implications  
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where 1r and 2r are the inlet wall radii respectively, then for 

any value k  
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This homogenous system only has the trivial solution 

unless  
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Given A, r1 and r2, the question arises “are there any k 

values which satisfy the condition (12)?” Letting 
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where the double subscript k, n shows dependence on both k 

and n. The )(xX now follows from its ordinary differential 

equation (9) giving )cos()(  xkaxX nk
, where ka  and 

 are arbitrary constants in this analysis and represent the 

amplitude of the standing wave and  its phase respectively. 

The )(rC now follows from its ordinary differential equation 

(equation (8)) and boundary conditions with unique 

coefficients for its independent solutions except when  
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next wave boundary is reached. At this condition the wave 

component collapses to a constant and the boundary 

conditions for the cylindrical flow become singular. In fact 
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so that  
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VI. NEGATIVE SEPARATION CONSTANT 

In this case the separation constant is put negative so that: 
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in this case letting rkA 2/12 )(  so that the differential 

equation that R satisfies is given by:  
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Applying the boundary conditions on ),( rxN  implying 

conditions on the )(rC as shown in the previous section the 

possibility of non-cylindrical flow upstream and downstream 

is obtained if and only if:  
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Solving for )(xX gives 
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where 
kF and 

kG are constants. So to investigate the 

possibility of non-cylindrical flow upstream and downstream 

with the onset of standing waves the separation constant must 

be taken as positive, if it is taken as negative the non- 

cylindrical flow x variation will be given in terms of the 

hyperbolic functions. 

 

VII. ZERO SEPARATION CONSTANT 

 

In this case )(xX and )(rR satisfy 

 

0
1111

2

2

22

2











dx

Xd

X
A

rdr

dR

rdr

Rd

R
 

so that )(xX is given by   xxX )( , where  and  are 

constants. R(r) then satisfies  

 

0)1( 2

2

2
2  RAr

dr

dR
r

dr

Rd
r  

 

The modified Bessel equation giving rise to the so-called 

hyperbolic functions as independent solutions )(nI and 

)(nK (for n integer), is 

0)( 22

2

2
2  Rn

d

dR

d

Rd






 , 

rewriting the differential equation that R(r) satisfies with z = 

A½r, gives 

  

0)1( 2

2

2
2  Rz

dz

dR
z

dz

Rd
z ,                 (13) 

 

 

2

2
2

2

2
2

dt

d
t

dz

d
z   and 

dt

d
t

dz

d
z  , 

 

and equation (13) becomes 

 

0)1( 2

2

2
2  Rt

dt

dR
t

dt

Rd
t , 

 

which is the Bessel equation of order 1 with independent 

solutions )(1 tJ  and )(1 tY respectively, so the general solution 

is )()()( 11 tYEtJDrR kk  . Performing the same analysis 

and investigating the Bessel Cross product it is found that 

non-cylindrical flow is not possible. For the Stokes and 

Poisson class the same analysis is performed and a 

remarkable theoretical prediction made. 

 

VIII. THE STOKES-POISSON CLASS 

 

2

2

x

 
+ Bbr

rrr









 2

2

2 1 
 

 

once again ),( rx ),()( rxr NC   , where the C and N 

subscripts have their previous meanings, using one again 

separation of variables, it can be shown that  

Bbr
dr

d

rdr

d
CC  2

2

2

)(
1

)(   

and  
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with n=1 giving )(1 zI and )(1 zK as independent solutions. It 

appears more convenient to relate this equation to the 

ordinary Bessel equation of order 1. Introducing the new 

independent variable t such that itz  , where i = 1 , 

then 

In this case A=0 so that xu satisfies bux 22  and 

),( rx satisfies: 



  

2

2

2

22

2
1111

k
dx

Xd

Xrdr

d

rdr

d

R

CC 










   (14) 

Performing the same analysis by applying the boundary 

conditions it can be shown for a positive separation constant 

that non-cylindrical flow is not possible, however for a 

negative separation constant, )(xX and )(rR satisfy: 

02

2

2

 Xk
dx

Xd
                                (15) 

and  

0)1( 22

2

2
2  Rrk

dr

dR
r

dr

Rd
r  

giving the general solution as  

)()()( 11 krYEkrJDrR kkk   

and 

)sinh()cosh()( kxGkxFxX kkk   

0)()()()( 1111  zYzJzYzJ  , 

where 1krz  and 12 / rr . If nz  is the nth zero of this 

cross product and using the analysis of section (4) with 

1rkz nn  the remarkable result that 01 r implies the 

possibility of a non-cylindrical flow variation. So that for any 

inlet radius r1 there may exist an x variation in the stream 

function for the special case which has been referred to as the 

Stokes-Poisson class. If there is the additional boundary 

condition that as x , 1)( xX , i.e. there is 

cylindrical flow far upstream, then rewriting the solution to 

equation (15) as 
kxkx ee   and applying this boundary 

condition gives 0 , superposition of solutions gives  

))()((),(
1

1,1,,



M

n

nknk

kx

nkN krYFkrJEeArrx  

where 
nkF ,

being a constant and )(rC following from its 

ordinary differential equation (equation (14)) with boundary 

condition (11).  

 

IX. CONCLUSIONS 

The cylindrical flow has been shown to be given either by 

circular trigonometric functions or hyperbolic functions. 

Even more interestingly it has been shown that for a case of 

flows characterized and referred to in this paper as the 

Stokes-Poisson class that a non-cylindrical flow variation 

will always be present for any inlet radius given by the 

hyperbolic functions which are of course exponential in 

nature.  All possible signs of the separation constant for both 

the Stokes-Helmholtz and the Stokes-Poisson classes must be 

considered as they are each theoretically possible.  

Furthermore in Pavlika [4] an integral formula based on 

Green’s first identity has been derived to calculate the values 

of the axial component of velocity from an expression of the 

form:  

ds
n

u
v

n

v
uu

S
p









 4 , 

where  is defined as the interior region of the closed surface 

S comprising of the duct outer and inner walls and the 

upstream and downstream planes, n is the unit outward 

drawn normal and v satisfies Helmholtz equation in  except 

at P, where it diverges like ||/1 pxx   .  
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Applying the boundary conditions in this case imply that to 

have a non-cylindrical flow variation given in terms of the 

hyperbolic functions )cosh(kx and )sinh(kx possible

It has been shown that a cylindrical flow variation may 

exists in the swan-necked duct by increasing the value of the 

constant A in the definition of BA
d

dC
 



2

2

1 such that 

different zeros of the Bessel Cross product are encountered. 
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