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Abstract—In this note, we have discussed and proved the 

different properties of double Laplace transforms like linearity 

property, change of scale, shifting property, double Laplace 

transform of partial derivatives, double Laplace transform of 

integral, multiplication by xt and division by xt. 

 

Index Terms—Double laplace transforms, partial derivatives. 

 

I. INTRODUCTION 

Partial differential equations have big importance in 

Mathematics and other fields of Science. Therefore it is very 

important to know methods to solve such partial differential 

equations. One of the most known methods to solve partial 

differential equations is the integral transform method [1], [2]. 

Eltayeb and Kilicman [3], [4] have established and studied 

the relationship between the double Sumudu transform and 

the double Laplace transform and their applications to 

differential equations. Singh and Mandia [5] have established 

the relation between the double Laplace transform and the 

double Mellin transform and discussed their applications. 

Recently, Eltayeb and Kilicman [6] have applied the double 

Laplace transform to solve general linear telegraph and 

partial integro-differential equations. 

In this paper, we have discussed the various properties of 

double Laplace transforms. The Double Laplace Transform 

is very useful in the solution of many Partial differential 

equations & it can be used as a very effective tool in 

simplifying the calculations in many fields of Engineering & 

Mathematics. We have discussed and proved the different 

properties of double Laplace transforms like linearity 

property, change of scale, shifting property, double Laplace 

transform of partial derivatives, double Laplace transform of 

integral, multiplication by xy and division by xy. 

 

 

  








00
21 ),(),(),( 12 dtdxtxfeessftxfLL

xsts

xt
     

(1) 

whenever the improper integral converges. 
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II. PROPERTIES OF DOUBLE LAPLACE TRANSFORMS  

A. Linearity Property 

If f (x, t) and g (x, t) be two functions of x and t such that 

  ),(),( 21 ssftxfLL xt 
 
and 

  ),(),( 21 ssgtxgLL xt   then 
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where α and β are constants. 

This property follows easily from (1). 

B. Change of Scale Property 

If   1 2( , ) ( , )t xL L f x t f s s  then 
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where a and b are constants. 

Proof: from (1), we have 
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We put ax = u and bt = v in the integral of (2), where u and 

v takes the limit from 0 to ∞. Hence, we get 
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C. First Shifting Property 

If   1 2( , ) ( , )t xL L f x t f s s  then 

  1 2( , ) ( , )ax bt
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where a and b are constants. 

Proof: From (1), we have 
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Let f (x, t) be a function of two variables x and t, where x, t > 

0. The double Laplace transform of f (x, t) as defined by 

Kilicman et al. [7], [8] is given as
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Thus  
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D. Double Laplace Transform of Partial Derivatives 
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Proof: from (1), we have 
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E. Double Laplace Transform of Integral 
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From the property 2.4, we have 
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F. Multiplication by xt 
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G. Division by xt 
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provided the integral on the right side exists. 
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