
  

 

Abstract—Changes in elastic constants on amorphasization 

are obtained from the corresponding cubic crystal values 

following a theoretical scheme based on equations of motion of 

deformation and dispersion relations. The long wavelength 

limit of the dispersion relations for an amorphous system 

enables to connect the bulk moduli to force constants. Bulk, 

shear and Young moduli and Poisson ratio are obtained for 

amorphous Ag, Al, Au, Cr, Cu, Fe, Ge, Ir, K, Li, Mo, Na, Nb, Ni, 

Pb, Pd, Pt, Si, Ta, Th, V and W. We also make a connection of 

elastic properties to thermal properties through Debye theory. 

Finally, we present phonon dispersion curves computed for 

selected amorphous metals (Si, Pb, Ni, Al, Au, Th and Fe) and 

amorphous alloys (ZrCo and Zr67Ni33). 

 

Index Terms—Amorphous metals, amorphous alloys, elastic 

constants, phonon dispersion.  

 

I. INTRODUCTION 

Ordinarily, metallic liquids solidify immediately into 

crystalline phases below melting temperature. However, 

crystallization can be avoided by fast cooling rates, which is 

very significant for the synthesis of an amorphous phase for 

metallic systems. Since the pioneering work of Klement et al. 

[1], a good deal of progress [2]-[6] has been made to enhance 

the attainability of the amorphous phase at reduced cooling 

rates and at temperatures close to the glass transition 

temperature. Retaining the disordered structure of liquids in 

the amorphous metallic state, while maintaining its stability, 

is an outcome of delicate balance of mechanical and thermal 

forces.  

The mechanical and thermal properties of amorphous 

metals are strikingly different than ordinary glasses. Unlike 

oxide glasses, the amorphous metals are soft, plastically 

deformable and endowed with high tearing strength. Though 

the density at amorphasization is only 1-2% less than the 

corresponding crystalline phase, the bulk modulus decreases 

by about 7%. Young and shear moduli, however, are lowered 

by ~20-40%. The velocity of the longitudinal sound wave 

(vL) in amorphous metallic systems is found to be ~16% less 

than the corresponding crystalline phase whose transverse 

sound velocity (vT) increases by ~9% on amorphasization. 

Also, vL/vT   3 , which, in general, is not true for 

crystalline metals. 

In this work we have used a simple central force model to 

discuss the elastic deformation of amorphous metals. The 

effective interaction between ions is modelled through a 
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central pairwise potential effective between the nearest 

neighbors only. The volume-dependent force due to 

conduction electrons has been included using the 

Thomas-Fermi method. Relevant relations and results for the 

elastic constants, bulk modulus, shear modulus, Young 

modulus, Poisson ratio and velocities of sound for amorphous 

metals are presented in Section II. The evaluation of 

dispersion curves and connection of elastic properties to 

thermal properties through Debye temperature are discussed 

in Section III. Phonon dispersion curves for ZrCo and 

Zr67Ni33 are also presented. This is followed by conclusion 

in Section IV. 

 

II. ELASTIC DEFORMATION OF AMORPHOUS METALS 

Amorphous metals are often treated as elastically isotropic 

deformed systems. Macroscopically, deformations are 

homogeneous, but at the microscopic levels there are local 

stresses which cause inhomogeneous deformations. The 

force (F = Fion + Felectron) consists of contributions from 

ions and electrons. Bhatia and Singh [7] suggested a simple 

theoretical approach where ionic interactions are evaluated 

with a central pairwise potential, and the force acting on ions 

due to electrons is modelled through a volume-dependent 

term using the Thomas-Fermi method.  

 

𝑤𝐿
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2𝑧

𝑎2
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𝑒𝐾TF
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2 𝑞 =

2𝑧

𝑎2  𝛽𝐼1 +
𝛿

2
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The second term on the right hand side of (1) takes into 

account the electrostatic contributions. ,  and e are force 

constants parameters and can be determined using the 

observed elastic data. KTF is the reciprocal of the 

Thomas-Fermi screening length. G (q) stands for exchange 

and correlation effects of the electron screening through the 

modified Hartree dielectric function. The shape factor G (qrs) 

(rs is the Wigner-Seitz radius) takes into account [8] the 

cancellation effects occurring between the kinetic and 

potential energies inside the ion cores, making the effective 
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In an amorphous material, the nearest neighbor atoms 

around each atom may be regarded (ignoring local stresses) 

as continuously distributed over a spherical surface of 

appropriate radius a. It facilitates to solve the equation of

motion where the sum over n neighbors can be replaced by an

over the surface of a sphere of volume . For the longitudinal 

and transverse wave frequencies L and T for the elastic 

wave propagation in amorphous materials, one has [7].

integral,  ⋯ = (
𝑧

4𝜋
)  ⋯𝑑𝑛 , z is the coordination number) 



  

potential weak in the core.  and  are related to the first and 

second derivatives, respectively, of the ionic pairwise 

potential  (r) at r = a, the nearest neighbour distance, 
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where  = niM (ni is the nearest neighbor density) and M 

denotes the mass of the ion. The integrands I1 and I2 stand 

for 
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sin (𝑞𝑎 )

𝑞𝑎
                              (4) 
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A. Elastic Constants 

Equations (1) and (2) are used to obtain relations for elastic 

constants. There are only two (camp11 and camp44) 

independent elastic constants for isotropic materials. For 

q0, (1) and (2) give 

𝜌𝑣𝐿
2 =

𝑧𝛽

3
+

𝑧𝛿

5
+ 𝑒                                (6) 

𝜌𝑣𝑇
2 =

𝑧𝛽

3
+

𝑧𝛿

15
                                    (7) 

where vL (=L/q) and vT (=T/q) are longitudinal and 

transverse wave velocities. vL and vT can readily be related to 

elastic constants. Bhatia and Singh [9] expressed the equation 

of motion for displacement s  for elastically isotropic solids as 

𝜌
𝜕2𝑠 

𝜕𝑡2 = 𝑐amp11grad div 𝑠 + 𝑐amp 44∇
2𝑠                 (8) 

For shear waves (div 𝑠 = 0), (8) gives 

 

𝑣𝑇 =  
𝑐amp 44

𝜌
 

1/2

                                (9) 

For longitudinal waves, the deformation produced is not 

accompanied by rotation (curl 𝑠  = 0), hence, noting the vector 

identity, grad div = curl curl + 𝛻2, one gets 

𝑣𝐿 =  
𝑐amp 11

𝜌
 

1/2

                            (10) 

 

Further, the force constants on the right hand side of (6) 

and (7) can readily be related [10] to the elastic constants cij 

of cubic structure materials, i.e., 

𝑐amp 11 = 𝑐11 −
2

5
𝑃𝑎                        (11) 

𝑐amp 44 = 𝑐44 −
1

5
𝑃𝑎                         (12) 

where Pa = c11 – c12 - 2c44 is the elastic anisotropy of a 

cubic material. In the special case where the system is in 

equilibrium under central forces alone (e =  = 0), [6] and 

[7] yield 

 
𝑣𝐿

𝑣𝑇
=  3                                   (13) 

A similar result to (13) has also been obtained by Grest et 

al. [11] by computer simulations of a glass in which the 

atoms interact via central forces of the Lennard-Jones 

potential. 

B. Elastic Moduli 

 

      

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

 

The bulk modulus (Ba), shear modulus (Ga), Young 

modulus (Ea) and the Poisson ratio ( a) for isotropic elastic 

materials are related [9] to the elastic constants, i.e. 
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TABLE I: ELASTIC CONSTANTS AND DEBYE TEMPERATURES FOR SELECTED AMORPHOUS METALS; C11 AND C44 (AMORPHOUS PHASE, GPA); VL AND VT

(MS1); B AND E (AMORPHOUS PHASE, GPA);A (AMORPHOUS PHASE, K); L (LIQUID PHASE, K);C (CRYSTALLINE PHASE, K)

c11 c44 vL vT B E  a l c

Ag 143 32.2 3688 1752 99.8 87.3 0.354 154.5 164.1 224

Al 113 26.3 6454 3118 77.5 70.8 0.348 276.6 294 428

Au 202 32.3 3233 1293 159 90.6 0.405 115.2 121.6 165

Cr 318 117 6643 4030 162 283 0.209 416.3 459.9 630

Cu 219 58.5 4931 2548 141 154 0.318 268.8 244.4 343

Fe 279 85.4 5957 3297 165 219 0.279 346.2 364.7 470

Ge 150 56.5 5300 3249 75.0 135 0.199 244.6 273 374

Ir 650 221 5371 3134 355 549 0.242 298.9 420

K 5.91 1.74 2669 1450 3.59 4.50 0.291 59.2 71.6 91

Li 19.7 5.69 6079 3268 12.1 14.8 0.297 253.9 275.2 344

Mo 434 124 6519 3490 268 323 0.299 319.6 450

Na 8.18 2.80 2902 1698 4.45 6.94 0.240 97.2 158 158

Nb 225 39.6 5118 2150 172 110 0.393 185.6 275

Ni 291 78.4 5270 2968 187 206 0.316 324.9 324.7 450

Pb 56.2 10.1 2227 945 42.7 28.1 0.390 62.8 81 105

Pd 264 53.3 4684 2103 193 146 0.374 200.4 204.7 274

Pt 370 65.1 4146 1740 283 181 0.393 164.1 168.5 240

Si 194 70.8 9115 5501 100 172 0.214 441.0 471 645

Ta 290 70.7 4172 2059 196 189 0.339 176.3 240

Th 103 34.0 2968 1704 57.7 85.2 0.254 106.7 163

V 224 52.8 6136 2976 154 142 0.346 287.4 380

W 512 153 5151 2815 308 294 0.287 255.5 400



  

𝐵𝑎 = 𝑐amp 11 −
4

3
𝑐amp 44                     (14) 

 

𝐺𝑎 = 𝑐amp 44                                (15) 

 

𝐸𝑎 =
𝑐amp 44 (3𝑐amp 11−4𝑐amp 44 )

𝑐amp 11−𝑐amp 44
                   (16) 

 

 =
𝑐amp 11−2𝑐amp 44

2(𝑐amp 11−𝑐amp 44 )
                          (17) 

 

The computed values of the elastic constants for 

amorphous metals are tabulated in Table I. The values of the 

cij of cubic crystalline materials are taken from [12]. The 

table suggests that amorphous metals differ considerably 

from one another and possess a wide range of elastic moduli. 

Such diverse values of elastic properties make the amorphous 

metals interesting for particular technical applications. The 

elastic anisotropy Pa is mostly negative except for Nb, Cr, 

Mo and W. The highest negative values of Pa are found for Ir, 

Fe, Ni and Cu, whereas Na and K have the lowest negative Pa. 

Highest values of bulk (Ba), shear (Ga, or camp44) and 

Young (Ea) moduli are found for amorphous metals like Ir, 

W and Mo, while alkali group metals (Na and K) possess the 

lowest values of Ba, Ga and Ea. The Poisson ratio is found to 

vary from 0.2 (for Ge) to 0.4 (for Au). We may recall that 

Poisson originally argued for a universal value of  = 1/4 for 

all materials. This makes camp12 = camp44. Most materials 

have Poisson ratio values ranging from zero to 0.5. A 

perfectly incompressible material deformed elastically at 

small strains would have the Poisson ratio of exactly 0.5. 

Materials like steel and rigid polymers exhibit values around 

0.3. 

It is well known [13] that when an amorphous material 

crystallizes, the shear modulus increases by about 30-40%, 

while the corresponding increase in the bulk modulus Ba is 

only 4-6%. We can, with the use of the present formalism, 

provide an estimate to the changes B, of the bulk modulus, 

and G, of the shear modulus. First, we note that at 

equilibrium, the sum of the ionic (pi) and electronic (pe) 

pressures must be zero, 

 

pi + pe = 0                                        (18) 

 

   

    

 

 
𝛽′

3
+

3𝐴

5
−5/3 = 0                           (19) 

 

where 𝛽′ = 𝑧𝛽 . In deriving (19), we have taken the free 

electron value of e (= A5/3, A being a constant). Making 

use of (6), (7), (14), (15), we get 

 
∆𝐺

𝐺
=

𝑛

5
 3

∆𝐵

𝐵
−

1

𝑚

∆


                              (20) 

 

where n = B/G and m = B/e. For a typical change of / = 

0.02, B/B  0.06 on crystallization and for m = 1.5 one has 

 
∆𝐺

𝐺
= 0.04𝑛                                 (21) 

As n ranges from 2 to 5 for different materials [13], (21) 

suggests that G/G on crystallization changes from 8% to 

20%. This latter result can further be improved by 

considering local atomic distortions and local stresses. 

 

III. DISPERSION CURVES FOR AMORPHOUS METALS AND 

ALLOYS 

 

The dispersion curves exhibit certain broad features. 

Longitudinal phonons show oscillatory behavior with 

prominent maximum frequency. The position of the first 

frequency minimum roughly coincides with the first peak in 

the structure factor. On the other hand, the maximum 

frequency of the transverse phonons is smaller and appears at 

a larger q than that of the longitudinal phonons. The 

oscillatory behavior of the transverse phonons is quite 

insignificant beyond the first peak. 

We can successfully explain the features of elastic waves 

in amorphous systems through the formalism of Section II. 

For simplicity, we assume that the system is in equilibrium 

under central forces alone ( = e = 0). Equations (1) and (2) 

then simplify to 

 

𝜔𝐿
2 =

2𝑧𝛿

𝑎2𝜌
𝐼2(𝑞𝑎)                           (22) 

 

𝜔𝑇
2 =

𝑧𝛿

𝑎2𝜌
 𝐼1 𝑞𝑎 − 𝐼2 𝑞𝑎                    (23) 

 
 

 
Fig. 1. Longitudinal frequency ωL vs. q for selected amorphous metals. 

 

 
Fig. 2. Transverse frequency ωT vs. q for selected amorphous metals. 

 

The values of z can be obtained from the elastic constants 
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The study of phonon dispersion curves (frequency 
versus wave number q) for amorphous metals has been 

subject of considerable interest [14], [15] of both theoretical

and experimental investigations.

With pi (= Ui /, Ui is the ionic energy and  stands for 

volume) and pe (=  e d / ) (18) can be expressed 

further in terms of potential parameters as



  

(z = 5camp11= 15camp44). The density  and the atomic 

mass M are used to calculate the atomic volume , which 

yields the nearest neighbor distance a ( = 0.71a3). The 

computed values of L and T for selected amorphous 

metals (Al, Au, Fe, Ni, Si and Th) are plotted in Fig. 1 and Fig. 

2, respectively. We observe that the L-q curves exhibit 

oscillations whereas transverse phonons (T-q curves) 

hardly show any oscillations. For q, L  T. On the 

other hand, for q0, L =  3T, which is almost exactly the 

value obtained in computer simulations by Grest et al. [11] 

for central forces. The position of the first minimum in the 

L-q curve is found to be in the region where the static 

structure factor for liquid metals [16] has its first maximum. 

Though the nature of oscillations of L and T are similar for 

the different metals considered here, the magnitudes of the 

maxima differ considerably. The maximum value of L and 

T are found for amorphous Si followed by Pb, Ni, Al, Au, 

Th and Fe. The values of L and T in Si are almost 4.8 times 

higher than those of Fe. 

A connection of elastic properties to thermal properties can 

be made through Debye theory. The long wavelength 

vibrational contribution to the heat capacity at low 

temperature, T, is given as 

 

𝑐𝑉 =
2𝜋2𝑘𝐵

4 𝑇3

5ℏ3𝑈av
3 =

12𝜋4𝑘𝐵𝑛

5
 

𝑇

amp 𝐷
 

3

                 (24) 

 

where kB is the Boltzmann constant, ℏ = ℎ/2𝜋 (h is Plank's 

constant) and n the number density (N/). Equation (24), 

after some simplification, yields, 

 

amp 𝐷 = 251.4  
𝜌

𝑀
 

1/3

𝑈av                       (25) 

 

with 

 

𝑈av =  
1

3
(𝑣𝐿

−3 + 2𝑣𝑇
−3) 

−1/3

                    (26) 

 

In (25),  is expressed in g cm3, M, the atomic mass, in g 

mol1, and vL and vT in km s1. vL and vT can be obtained from 

the elastic constants camp11 and camp44, respectively, using (10) 

and (9) and are tabulated in Table I. vL and vT are found to be 

maximum for Si (vL = 9115 m s1 and vT = 5501 m s1) and 

minimum for Pb (vL = 2227 m s1 and vL = 945 m s1). The 

computed values of ampD from (25) are also tabulated in 

Table 1. For sake of comparison, we listed the Debye 

temperature, lmD, computed [17] for liquid metals at melting 

temperature. cD for crystalline phase [18] is also tabulated. 

It may be noted that the Debye temperature for amorphous 

metals are lower than the corresponding liquid and crystalline 

phases. 

The present approach can also be applied to amorphous 

binary metal alloys. As an example, we have presented the 

results of L and T for ZrCo and Zr67Ni33 in Fig. 3 and Fig. 4, 

respectively. For ZrCo, the force constant  has been 

obtained by using the experimental values [19]  = 7.6 g cm3, 

camp44 = 49.125 GPa and a = 0.3201 nm. For Zr67Ni33,  is 

determined from the experimental and molecular dynamics 

simulation results [20], [21] vL = 4800 m s1 and  = 7.06 g 

cm3. Phonon frequencies L and T are higher in Zr67Ni33 

than that of ZrCo. Likewise the amorphous metals, alloys 

also exhibit oscillations in L but no substantial oscillations 

in T after the first peak. 

 

 
Fig. 3. Phonon curves for ZrCo alloy. 

 

 
Fig. 4. Phonon curves for Zr67Ni33 alloy. 

 

IV. CONCLUSION 

A dispersion relation based on central pairwise potential 

for one-component amorphous metals is used to investigate 

the elastic moduli. The long range wavelength limit (q0) of 

the dispersion relation connects the elastic moduli to force 

constants and the velocities of longitudinal and transverse 

phonons in the amorphous system. It successfully explains 

the essential features of dispersion relations and the change of 

elastic moduli on amorphasization as observed from 

experimental and simulation studies. The asymptotic (q) 

values of the phonon frequencies [L (q) = L (q)] 

are quite different from one metal to another. 

But, in the long wavelength limit (q0), L(q0) = 

 3T(q0). The Debye temperature ampD computed for a 

variety of metals are lower on average by 40% from the cD 

of the crystalline phase. However, ampD are lowered by 

about 6% to the values of lmD of the liquid metals near the 

melting temperatures, with few exceptions like Cu, Na and 

Pb. L, T and their asymptotic values are higher in Zr67Ni33 

than ZrCo. A further improvement is possible by including 

detailed electronic contributions with the proper exchange 

and correlation effects.  
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