
  
Abstract—Many physical phenomena are described by non-

linear partial differential equations. These equations have 
soliton solutions which exhibit wavelet features called wavelet 
like solitons. Such wavelet like solitons have expansions in 
Gaussian family wavelets. In this work, using the fact that the 
wavelet like soliton has Gaussian representation, multi-
resolution analysis which is based on wavelets is carried out to 
obtain better approximation with the application of wavelet-
Galerkin and wavelet-Petrokov-Galerkin methods for soliton 
solution of Korteweg-de Vries equation which appears in the 
study of waves in shallow water in the fluid dynamics. In the 
end, experimental data processing employing Gaussian 
representation of soliton solution is discussed. 

 
Index Terms—Wavelet like solitons, gaussian representation, 

wavelet decomposition, data processing. 
 

I. INTRODUCTION 
Multi-resolution analysis (MRA) uses wavelet functions 

as basis with an objective to specify the signal as a 
collection of its successive approximations. This 
approximations are of different resolutions, whence the 
name multi-resolution analysis. The term wavelet or the 
phrase wavelet analysis was first coined by J. Morlet [1]. 
Earlier, wavelets were used in electrical engineering. The 
major breakthrough occurred due to D. Gabor [2], who 
introduced the Windowed Fourier Transform (WFT) for the 
local spectral analysis of radar signals that actually laid 
pathway for use of wavelets from electrical engineering to 
mathematical physics.  Due to the limitation of WFT, where 
the localization is attained due to fast decaying window 
functions, the scheme called, Wavelet transform (WT) with 
a wide window for low frequency signals and a narrow 
window for high frequency signals was introduced and 
formalized later by Grossman and Morlet [1], Daubechies [3] 
and many others. Recently, wavelet transform has been 
emerged as the most effective tool for signal processing and 
image analysis especially when the signals are random and 
comprised of fluctuations of different scales. Wavelets have 
been used in signal processing, problems involving singular 
potentials in quantum mechanics, in discussions concerning 
q-algebras, and even in nuclear structure studies [4]. In 
wavelet inspired approach, the sets of ‘wavelets’ are 
employed to approximate signals because of their Gaussian 
form. The beauty of the wavelet analysis lies in its 
predominant property of self-similarity that makes wavelet 
as a powerful tool for analyzing fractal like patterns. Since 

the soliton-like solutions have infinite extent, it requires 
rather appropriate compactly supported basis functions to 
investigate such structures than the traditional nonlinear 
tools (inverse scattering, group symmetry, functional 
transforms) that are not always applicable. Such 
structures/patterns generally have finite space-time 
extension and a multi-scale structure. Multi-resolution 
analysis that uses wavelet functions could be therefore a 
natural useful method for the construction of such nonlinear 
bases. This motivated us to employ the wavelet methods to 
analyze wavelet like soliton solutions of .Korteweg-de Vries 
equation (KdV) that appears in the study of waves in 
shallow water in the fluid dynamics. We have in [5]-[7], 
carried out extensively the wavelet analysis of solitons 
arising as solutions of Non-linear Schrodinger Equation 
(NLS), Sine-Gordon equation (SG).  
 

II. MATHEMATICAL PRE-REQUISITES 
We need some mathematical formulations that are 

relevantly useful in the present work.  

A. Wavelet Transforms 
Practically wavelet transform is a convolution of the 

signal with a family of functions obtained from a basic 
wavelet by shifts and dilations. In precise terms and 
notations, the classical wavelet transform, also called as 
Continuous Wavelet transform (CWT) [8], is a 
decomposition of a function, ݂ሺݔሻ, with respect to a basic 
wavelet ߰ሺݔሻ, given by the convolution of a function with a 
scaled and translated version of ߰ሺݔሻ  

 

టܹሺܽ, ܾሻሾ݂ሿ ൌ |ܽ|ିଵ ଶ⁄ ׬  ݂ሺݔሻ߰כ ቀ௫ି௕
௔

ቁ  (1)            ݔ݀
 

The functions, ݂ and ߰  are square integrable functions 
and ߰  satisfies the admissibility condition: ܥట ൌ

׬ หట෡ ሺఠሻห మ 
|ఠ| 

݀߱ ൏ ∞ 
 ట is called admissibility constant. Theܥ . 

subscript ‘*’ denotes complex conjugation, ‘ܽ’ is the scale 
parameter, ܽ ൐ 0, ‘ܾ’ is the translation parameter. The term 
1 ඥ|ܽ|⁄  is the energy conservative term that keeps energy of 
the scaled mother wavelet equal to the energy of the original 
wavelet. The function ݂ሺݔሻ  can be recovered by the 
reconstruction formula called Inverse transform: 

 
݂ሺݔሻ ൌ ଵ

஼ഗ
׬ ׬    టܹ݂ሺܽ, ܾሻ 

 
ଵ

√|௔|
߰ ቀ௫ି௕

௔
ቁ ௗ௔ௗ௕

௔మ         (2) 

where the admissibility constant, ܥట ൐ 0 . Therefore, any 
function with compact support which satisfies above 
requirement can be successfully used as a basic wavelet. 
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Furthermore, with the substitution, ݂ሺݔሻ  as the inverse 
Fourier Transform݂ሺݔሻ ൌ ଵ

ଶగ ׬ expሺ݅߱ݔሻ መ݂ሺ߱ሻ݀߱ஶ
ିஶ  in the 

definition of wavelet transform (1), we immediately get the 
spectral representation as 
 

టܹሾ݂ሺݔሻሿሺܽ, ܾሻ ൌ ଵ
ଶగ

|ܽ|ଵ ଶ⁄ ׬  expሺܾ݅߱ሻ ෠߰ሺܽ߱ሻതതതതതതതതത መ݂ሺ߱ሻ݀߱ஶ
ିஶ .               

(3) 
 

B. Discretization 
The convenient way for numerical implementation of WT 

is its discretised version, called Discrete Wavelet transform 
(DWT). With ܽ and ܾ as scale and translation parameters, 
taking scale ܽ: ܽ ൌ ܽ଴

௠  and the translation ܾ: ܾ ൌ ݊ ܾ଴ܽ଴
௠ , 

where ܽ଴  and ܾ଴ are the discrete scale and translation step 
sizes, respectively, the DWT is given by [8] 

 

టܹሺ݉, ݊ሻሾ݂ሿ ൌ ଵ
√௔బ

೘ ׬ ݂ሺݔሻ߰ ቀ௫ି௡௕బ௔బ
೘

௔బ
೘ ቁ∞

ି∞ ൌ
ଵ

√௔బ
೘ ׬ ݂ሺݔሻ߰ሺܽ଴

ି௠ݔ െ ܾ݊଴ሻ∞
ି∞  (4)                        ݔ݀

 

For ܽ଴ ൌ 1, the reconstruction of ݂ሺݔሻ is given by 
 

݂ሺݔሻ ൎ ݇ ∑  ∞
௠ୀ଴ ∑  ∞

௡ୀ଴ ൣ టܹ݂ሺ݉, ݊ሻ൧ܽ଴
ି೘

మ ߰ሺܽ଴
ି௠ െ ܾ݊଴ሻ         

(5) 
 
where ݇ is the constant that depends upon the redundancy of 
the basic wavelet and the lattice combination which is 
ignored in many applications and ෨߰௠,௡ is wavelet dual of 
 ߰௠,௡. 
 

III. KORTEWEG-DE VRIES EQUATION 
The generalized Korteweg–de Vries equation with time-

dependent damping and dispersion [9]: 
 

௧ݍ ൅ ௫ݍ  ௡ݍ ൅ ܽሺݐሻݍ ൅ ܾሺݐሻݍ௫௫௫ ൌ 0             (6) 
 

The first term of the equation is the evolution term, the 
second term represents the nonlinear term, while the third 
term is the linear damping with a time-dependent coefficient 
ܽሺݐሻ while the fourth term is the dispersion term with time-
dependent coefficient ܾሺݐሻ. In (6), ܽ, ܾ א ܴ while ݊ א ܼା. 

The solitary wave solution to (6) is given by 
 

,ݔሺݍ ሻݐ ൌ ஺ሺ௧ሻ
௖௢௦௛೛ሾ஻ሺ௧ሻሺ௫ି௩ሺ௧ሻ௧ሿ

                   (7) 
 
where ܣ represents the amplitude of the soliton, while ܤ is 
the inverse width of the soliton and ݐ represents the velocity 
of the soliton. Thus, for  ݌ ൌ ଶ

௡
 , without loss of generality, 

(7) takes the form 
 

,ݔሺݍ ሻݐ ൌ ஺

௖௢௦௛
మ
೙ሾ஻ሺ௫ି௩௧ሻሿ

ൌ ݄ܿ݁ݏ ܣ
మ
೙ሾܤሺݔ െ  ሻሿ      (8)ݐݒ

  
when ݊ ൌ 1,  
 

,ݔሺݍ ሻݐ ൌ ݔሺܤଶሾ݄ܿ݁ݏ ܣ െ  ሻሿ                  (9)ݐݒ

The same can be written as 
 

,ݔሺݍ ሻݐ ൌ ݏ  ݄ݐ݅ݓ ሻݏሺݍ ൌ ݔ െ  (10)          ݐݒ
 

IV. MATHEMATICAL ANALYSIS 
Most often the signals have a Gaussian form and display 

self-similar fractal like patterns. We have from [4], the 
soliton-like solution, ݑሺݔ, ሻݐ ൌ ሻݏሺݑ  with ݏ ൌ ݔ െ ݐݒ  has 
expansion in a Gaussian family of wavelets ߰ሺݏሻ ൌ ܰ݁ொሺ௦ሻ, 
where ܳሺݏሻ is a polynomial and N the normalization 
constant. In particular, if we choose ܳሺݏሻ  ൌ  െ݅ݏ െ ௦మ

ଶ
, we 

obtain a very particular wavelet with the support mainly 
confined in the (−1, 1) interval, namely ߰ሺݏሻ  ൌ
െ ௦మ ݏሾെ݅݌ݔ݁ 

ଶ
ሿగ

భ రൗ .  
We shall use this fact in the development of procedure for 

approximating the soliton solution through wavelet 
decomposition and in the further application of 
experimental data processing.  
We consider the most celebrated generalized KdV equation 
obtained from (6) with ݊ ൌ 1 
 

௧ݍ  ൅ ௫ݍݍ   ൅ ݍߤ ൅ ௫௫௫ݍߥ  ൌ  0.               (11) 
 

The equation (11) can be written in differential operator 
form: 

 
,ݔሺݍ෠ሺܮ  ሻሻݐ ൌ 0, where ܮ෠ ؠ డ

డ௧
൅ ݍ డ

డ௫
൅ ݍ ൅ డయ

డ௫య     (12) 
 
To apply the wavelet method or more appropriately, the 

wavelet-Galerkin method, the solution is decomposed with 
respect to the wavelet basis 

 
ሻݏሺݍ ൌ ,ݔሺݍ ሻݐ ൌ ∑ ሻ߰௝,௞ሺ௝,௞ݐ௝,௞ሺܥ  ሻ             (13)ݔ

 
where ܥ௝,௞ሺݐሻ  are the time dependent wavelet coefficients 
and ߰௝,௞ሺݔሻ is admissible function/basic wavelet to be taken 
as 
 

߰௝,௞ሺݔሻ ൌ ݄ି௝ ଶ⁄ ߰ሺ݄ି௝ݔ െ ݇ሻ.  
 

This is a discrete expansion or wavelet decomposition of 
soliton solution ݍሺݏሻ in terms of integer translations ሺ݇ሻ of 
߰ which provide the analysis of localization, and in terms of 
dyadic dilations ሺ݄௝ሻ of ߰, which provide the description of 
different scales. 

Substituting the decomposition (13) into (12), it yields the 
system of equations 

∑ ෠߰௝,௞ሺ௝,௞ܮሻݐ௝,௞ሺܥ ሻݔ ൌ 0.                (14) 

By scalar multiplication ׬ ݔ݀ ത߰௟,௠ , where ത߰௟,௠  is dual 
wavelet, we obtain the orthogonal system of compactly 
supported wavelets ߗ௠௞

௟௝ ؠ ׬ ݔ݀ ത߰௟,௠  .ሻݔ෠߰௝,௞ሺܮ
The system of (14) becomes  

∑ ௠௞ߗ
௟௝ ௝,௞௝,௞ܥ ൌ 0.                      (15) 

This is a system of ordinary differential equations in the 
wavelet coefficients ܥ௝,   ௞. 
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For the orthogonal Daubechies wavelets with compact 
support, only the matrix elements ߗ௠௞

௟௝  with the basic 
functions of the same scale ݈ ൌ ݆  are different from zero. 
Thus, (15) provides a sparse structure of non-linear system 
suitable for numerical implementation. 

The main component of the wavelet-Galerkin solution is 
the evaluation of the matrix elements ߗ௠௞

௟௝  of the differential 
operators in wavelet basis ߰௝,௞. 

For this purpose, the analytically determined wavelets 
such as Mexican hat, Morlet wavelets are employed.  

The wavelet –Galerkin scheme for (11) consists in 
substitution of discrete wavelet decomposition of the 
solution ݍሺݔ, ሻݐ ൌ ∑ ሻ߰௝,௞ሺ௝,௞ݐ௝,௞ሺܥ ሻݔ  in to (11), followed 
by the projection of the result onto orthogonal basis of ߰௟.௠ 
 

׬ ݔ݀ ത߰௟,௠ሺݔሻሾ ሶ௝,௞ܥ െ ௝,௞ܥሻݔ௦,௥߰௦,௥ሺܥ
ௗ

ௗ௫
൅ ௝,௞ܥߤ ൅

௝,௞ܥߥ
ௗయ

ௗ௫యሿ ߰௝,௞ሺݔሻ ൌ 0                                            (16) 
 

For the orthogonal Daubechies wavelets with compact 
support, this gives a system of nonlinear ordinary 
differential equations with unknown wavelet coefficients  
 only ݐ ௝,௞ depending on timeܥ

 
ሶ௟,௠ܥ െ ௠௥௞ߗ

௟௦௝ ௝,௞ܥ ൅ ଵ,௠௞ߗߤ
௟௝ ௝,௞ܥ ൅ ௠௞ߗߥ

௟௝ ௝,௞ܥ ൌ 0       (17) 
 
where the matrix elements are 
 

௠௥௞ߗ
௟௦௝ ൌ ׬ ݔ݀ ത߰௟,௠ሺݔሻ ߰௦,௥ሺݔሻ ௗ

ௗ௫
߰௝,௞ሺݔሻ, 

 

ଵ,௠௞ߗ
௟௝ ൌ න ݔ݀ ത߰௟,௠ሺݔሻ ߰௝,௞ሺݔሻ 

 
௠௞ߗ

௟௝ ൌ ׬ ݔ݀ ത߰௟,௠ሺݔሻ ߰௦,௥ሺݔሻ ௗయ

ௗ௫య ߰௝,௞ሺݔሻ.              (18) 
 

The direct integration in the matrix elements is 
numerically unstable for the irregularity of the basic 
functions ߰ሺݔሻ . However, they can be evaluated 
analytically. When all coefficients of (18) are known, the 
system of ordinary differential equations (17) can be solved 
numerically by an implicit or explicit method. 

In the simplest case of an explicit scheme we have 
ݐ௟,௠ሺܥ ൅ ߬ሻ ൌ ሻݐ௟,௠ሺܥ ൅ ߬ሾߗ௠௥௞

௟௦௝ ሻݐ௥,௦ሺܥሻݐ௝,௞ሺܥ ൅
ଵ,௠௞ߗߤ

௟௝ ௝,௞ܥ ൅ ௠௞ߗߥ
௟௝ ሻሿݐ௝,௞ሺܥ , where ߬  is a time step of 

integration. 
The evaluation of the matrix elements of all differential 

operators is provided by the knowledge of connection 
coefficients- the matrix elements of those operators in the 
basis of wavelet scaling function ߮ሺݔሻ ௞భ…ೖ೙߉  

ሺௗభ…೏೙ሻ ൌ

׬ ௞భ߮ݔ݀
ሺௗభሻ … ߮௞೙

ሺௗ೙ሻ, where the superscripts of the parentheses 
stand for the order of differentiation. Then all the terms with 
the wavelet basic functions ߰  are evaluated by the 
substitution ߰ሺݔሻ ൌ √2 ∑ ݃௡߮ሺ2ݔ െ 1ሻ . The general 
method of evaluation of connection coefficients is presented 
in [10]. 

Alternative scheme of evaluating the system of 
differential equations is provided by modified method-
Wavelet-Petrokov-Galerkin method (WPG) [11], where we 

make the substitution ߰௝,௞ሺݔሻ ൌ ݄ି௝ ଶ⁄ ߰ሺ݄ି௝ݔ െ ݇ሻ  in the 
expression (16) to write 

 
 ∑  ௝,௞ ׬ ௝ି݄ݔ݀ ଶ⁄ ߰൫݄ି௝ݔ െ ݉൯ሾ డ

డ௧
௝,௞ܥ െ ௦,௥݄ି௝ܥ ଶ⁄ ߰൫݄ି௝ݔ െ

௝,௞ܥሻݎ
ௗ

ௗ௫
൅ ௝,௞ܥߤ

ௗ
ௗ௫

൅ ௝,௞ܥߥ
ௗయ

ௗ௫యሿ ݄ି௝ ଶ⁄ ߰൫݄ି௝ݔ െ ݇൯ ൌ   (19) 
 

Introducing the change of variable ݕ ൌ ݄ି௝ݔ െ ݇ , the 
expression (19) becomes 

 
∑ ܽሺ݇ሻ ௗ஼ೕ,ೖ

ௗ௧
൅ ݄ିଷ௝ ଶ⁄ ∑  ௦,௥௝,௞ ∑ ܾሺ݈, ݇ሻ௝,௞ ௝,௞ܥ௦,௥ܥ ൅

௝ି݄ߤ ଶ⁄ ∑ ܽሺ݇ሻ௝,௞ ௝,௞ܥ ൅ ଷ௝ି݄ߥ ∑ ݀ሺ݇ሻ௝,௞ ௝,௞ܥ ൌ 0     (20) 
 

where ܽሺ݇ሻ ൌ ׬ ሻݕሺ߰ݕ݀ ത߰ሺݕ െ ݇ሻ, 
 

ܾሺ݈, ݇ሻ ൌ න ݕ݀
݀߰ሺݕሻ

ݕ݀
ത߰ሺݕ െ ݇ሻ, 

 

ܿሺ݇ሻ ൌ ሺെ1ሻఉ ׬ ݕ݀ ௗഀటሺ௬ሻ
ௗ௬

ௗഁటഥ ሺ௬ି௞ሻ
ௗ௬

 . 
 

The unknown coefficients ௝,௞ܥ  are determined from the 
system of ordinary differential equations written in matrix 
form: 

 
ௗ
ௗ௧

ܥܮ ൅ ܥܯ்ܥ ൅ ܥܰ ൅ ܥܶ ൌ 0         (21) 
 

where 
ܥ ൌ ,ሺ݈ܮ ,௝,௞ܥ ݇ሻ ൌ ܽሺ݈ െ ݇ሻ, 

 
,ሺ݈ܯ ݇, ሻݏ ൌ ݄ିଷ௝ ଶ⁄ ܾሺ݈ െ ݇, ݈ െ  ,ሻݏ

 
ܰሺ݈, ݇ሻ ൌ ௝ି݄ߤ ଶ⁄ ܽሺ݈ െ ݇ሻ, ܶሺ݈, ݇ሻ ൌ ሺ݄ିଷ௝ܿሺ݈ߥ െ ݇ሻ. 

 
Note that the unknown coefficients are only the time 

dependent. By Trapezoidal rule ௗ஼
ௗ௧

ൌ ஼೙శభି஼೙

∆௧
, where 

ݐ∆ ൌ ௡ାଵݐ െ  .௡, the time intervalݐ
The equation (21) becomes 

ܮ ቀ஼೙శభି஼೙

∆௧
ቁ ൅ ܥܯ்ܥ ൅ ܥܰ ൅ ܥܶ ൌ 0.         (22) 

Now setting ܩሺܥሻ ൌ ܥܯ்ܥ ൅ ܥܰ ൅ ܥܶ , we have from 
(22)  

௡ାଵܥሺܮ െ ௡ሻܥ ൅ ீ൫஼೙శభ൯ାீሺ஼೙ሻ
ଶ

ݐ∆ ൌ 0.           (23) 

This algebraic equation can be finally solved by 
Newton’s iterative method using the recursive construct 

ܷ௡ାଵ ൌ ܷ௡ െ
݂ሺܷ௡ሻ
݂ᇱሺܷ௡ሻ , ݊ ൌ 0,1,2, … 

The solution thus obtained by approximation process can 
be eventually compared with the exact solution obtained 
from (9) ݍሺݔ, ሻݐ ൌ ݔሺܤଶሾ݄ܿ݁ݏ ܣ െ ሻሿݐݒ  computed at 
different positions depending on time. 
 

V. EXPERIMENTAL DATA PROCESSING 
In experimental data processing, the central problem 

either in one dimensional or multi-dimensional set up is the 
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separation of two or more signals from a noisy background. 
Most often these signals have a Gaussian form which itself 
is a wavelet. Therefore, the wavelet analysis provides robust 
method in the presence of noise especially if taken as 
wavelet image of the Gaussian ݁݌ݔሺെݏଶ 2⁄ ሻ with vanishing 
momenta wavelets ௗ೙

ௗ௦೙ ሺെ ݌ݔ݁ ଶݏ 2⁄ ሻ  known analytically. 
The central idea here is to assume the Gaussian distribution 
representing the soliton solution as the best fit for the 
experimental data and take the wavelet image of this 
Gaussian as testing wavelet with appropriate analytically 
tested function as analyzing wavelet say.  

Recalling that the wavelet like soliton solution of KdV 
has the Gaussian form, we can therefore assume that 
Gaussian function is the ‘best fit’ to describe the 
experimental data set to be processed as testing wavelet 
function. Then, the problem of fitting the distribution of 
Gaussian sources is to find the parameter set 
(ܰ௞, ,௞ߪ ௞ݏ

௠ሻ௞ୀଵ
ெ  that minimizes the difference 

 

,ሺܰܨ ,ߪ ௠ሻݔ ൌ  ௘݂௫௣ሺݔሻ െ ∑ ேೖ

ටଶగఙೖ
మ

݌ݔ݁ ൬െ ሺ௫ି௫ೖ
೘ሻమ

ଶఙೖ
మ ൰ெ

௞ୀଵ      

(24) 
 

Applying wavelet transform to (24) with some 
analytically tested basic wavelet, say, Mexican hat or Morlet 
wavelet, one can precisely locate the position of the sources 
௞ݏ

௠. 
Let us start with the wavelet image of a single Gaussian 

representing the soliton, located without loss of generality at 
௠ݏ ൌ 0. 

 

ሻݏ௚௔௨௦௦ሺݍ ൌ    ே 

ටଶగఙೖ
మ

݌ݔ݁ ൬െ ୱమ

ଶ஢ౡ
మ൰ , ݏ ൌ ݔ െ  (25)    .ݐݒ

 
We need the wavelet images of the Gaussian with 

different vanishing momenta wavelets as analyzing wavelet 
where the first m family of vanishing momenta  wavelets 
[12], of  basic wavelets ߰: 

 

݃௡ሺݏሻ ൌ  െ1௡ାଵ ݀௡

௡ݔ݀ ଶݏሺെ݌ݔ݁ 2⁄ ሻ, ݊ ൐ 0 
 
which satisfies the condition 
 

׬ ௠ݏ ݏ݀ ߰ሺݏሻ ൌ 0, ,݉׊ 0 ൑ ݉ ൏ ݊, ݊ א ܼ. 
 

The wavelet images of the Gaussian with vanishing 
momenta wavelet are therefore given by: 

௚ܹ೙ሺܽ, ܾሻൣݍ௚௔௨௦௦൧ ൌ ׬ ଵ
√௔

݃௡ ቀ௦ି௕
௔

ቁതതതതതതതതതതതതതത  (26)   .ݏሻ݀ݏ௚௔௨௦௦ሺݍ

The integrals in (26) can be evaluated if the Fourier 
representation (3) 

టܹሺܽ, ܾሻൣݍ௚௔௨௦௦൧ ൌ
ଵ

ଶగ
|ܽ|ଵ ଶ⁄ ׬ expሺܾ݅݇ሻ ෤݃௡ሺܽ݇ሻതതതതതതതതതஶ

ିஶ  ෤௚௔௨௦௦ሺ݇ሻ݀݇,        (27)ݍ

where ෤݃௡ሺ݇ሻ ൌ ሺെ݇ଶ݌ݔሺ݅݇ሻ௡݁ߨ2√ 2⁄ ሻ. 

෤݃ሺ߬, ݇ሻ ൌ ሺ݅݇߬݌ݔ݁ߨ2√ െ ݇ଶ 2⁄ ሻ              (28) 
 

and then take the ݊ th derivative of ݊  with respect to the 
formal parameter ߬ at ߬ ൌ 0 to obtain the wavelet image of 
݃௡ family: 
 

෤݃௡ሺ݇ሻ ൌ ቀ ௗ
ௗఛ

ቁ
௡

ቚ
ఛୀ଴

෤݃ሺ߬, ݇ሻ                  (29) 
 

௚ܹ೙ሺܽ, ܾሻ ൌ ቀ ௗ
ௗఛ

ቁ
௡

ቚ
ఛୀ଴

௚ܹሺఛሻሺܽ, ܾሻ            (30) 

 
Substituting (28) instead of  ෤݃௡ሺ݇ሻ into (29) and taking 

into account the Fourier image of Gaussian (25) 
෤௚௔௨௦௦ሺ݇ሻݍ  ൌ    ܰ ݁݌ݔ ቀെ ୩మ஢మ

ଶ
ቁ, we arrive at 

 

௚ܹ೙ሺܽ, ܾሻൣݍ௚௔௨௦௦൧ ൌ ܰට ௔
ଶగ

׬  ݌ݔ݁ ݇݀ ቀ݅݇ሺܾ െ ܽ߬ሻ െ

௞మ

ଶ
ሺܽଶ ൅ ଶሻቁ ൌߪ ܰ√ܽ

௘௫௣൬ି ሺ್షೌഓሻమ

మሺೌమశ഑మሻ
൰

ඥ௔మାఙమ
           (31) 

 
for the wavelet image of a single Gaussian with respect to 
the analyzing wavelet, vanishing momenta wavelet ݃௡   in 
instant case (30). 

To find the distribution parameters for the case of single 
Gaussian source we use the coefficients of its ݃ଶ 
decomposition.  

Equation (30) for ݊ ൌ 2 for example leads to  
 

௚ܹమሺܽ, ܾሻൣݍ௚௔௨௦௦൧ ൌ 

ܰܽ ቀ ௔
௔మାఙమቁ

ଷ ଶ⁄
ቂ1 െ ௕మ

௔మାఙమቃ ݌ݔ݁ ቀെ ௕మ

ଶሺ௔మାఙమሻ
ቁ      (32) 

 
Taking the derivative ߲ ߲ܽ⁄  of (32) at the central point 

ܾ ൌ 0, we find the extremum of the ݃ଶ coefficient at a scale 
ܽ௠ ൌ  .ߪ5√

The value of the wavelet coefficient at the extremal point 
is therefore 
 

௚ܹమሺܽ௠, 0ሻൣݍ௚௔௨௦௦൧ ൌ
ܰ

ߪ√
5ହ ସ⁄ 6ିଷ ଶ⁄ ൌ

ܰ
ඥܽ௠

൬
5
6൰

ଷ ଶ⁄

 

 
Thus, performing the convolution (1) or for numerical 

implementation (4) with 
݃௡ሺݏሻ ؠ ߰௝,௞ሺݔሻ ൌ ݄ି௝ ଶ⁄ ߰ሺ݄ି௝ݔ െ ݇ሻ  numerically and 
finding the maximum of the ݃ଶ  wavelet coefficient we 
obtain the dispersion and amplitude of the original 
distribution ݍ௚௔௨௦௦ such that 
 

௚௔௨௦௦ݍ ൌ ∑ ෨߰௝,௞௝௞ ൏ ߰௝,௞, ௚௔௨௦௦ݍ ൐. 
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