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Abstract—The hierarchy of states is developed with 

increasing the value of l, the orbital angular momentum, is now 

called "Shrivastava's hierarchy of fractional states". We have 

examined the odd denominator states as extended to a 

hierarchy of continued fraction which describes a very large 

abundance of fractional states. The heirarchy developed by 

random numbers m and pi (i=1,2,…,4) by using the continued 

fraction is known as the Haldane's hierarchy. We find that the 

predictions of the Dirac equation agree with the idea of 

fractional charges. We have introduced the combination of spin 

and orbital quantum numbers, including the negative sign for 

spin, in such a way that there occur fractional charges through 

the Bohr magneton. This leads to doubling of eigen values so 

that we define an additional matrix the properties of which are 

important when magnetic field is present. There is a 

spin-charge coupling so that spin ½ particle can have the zero or 

one charge. The Dirac equation can accommodate not only 

charges of 0 and ±e but also fractional values such as 1/3 and 

2/3.  

 

Index Terms— Dirac equation, fractional charges, hierarchy, 

angular momentum. 

 

I. INTRODUCTION 

Recently, in three papers, we have laid down the basically 

correct theory of the quantum Hall effect [1]-[3]. It has been 

found [4], [5] in the Hall effect that the transverse 

conductivity as a function of magnetic field shows plateaus at 

certain fractions of e2/h. The measurement of the resistivity in 

the plateau region can be performed with very high precision. 

In the absence of scattering processes, at low temperatures 

and high fields, the classical Hall current is described by the 

fraction,  

 

Ix=
B

eVn ys
                                (1) 

 

where Vy is the applied voltage, e the charge of the electron, B 

the magnetic field and ns the surface carrier density, 

 

ns=N                                      (2) 

 

where  is a filling factor and 

 

N=eB/hc                                 (3) 

 

is the degeneracy factor per unit area obtained from the shift 
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of the oscillator wave function upon the application of 

magnetic field. Substituting (2) and (3) in (1) we find that, 

Ix=
hc

Ve y
2

                                (4) 

which means that the conductivity is given by, 

hc

e
xy

2

                                   (5) 

From (2) and (3) we find that, 

hceB

ns

/
                                 (6) 

which means that the carrier density and the field are adjusted 

in such a way that the filling factor  of the energy levels is an 

integer. From the occurrence of plateau in the Hall 

the value of h/e2. The plateaus in the Hall resistivity as a 

function of magnetic field were observed at many different 

fractions in addition to integer values. 

 

II. HALDANE'S HIERARCHY 

Haldane [6] suggested that the fractional filling factors 

occur according to a hierarchy which is built from numbers m 

and pi (i=1, 2 or 3) determined from a continued fraction in 

which the number of terms determine the number of fractions. 

These numbers m and pi are not derived from any physical 

properties but are integers. Since m and pi are not related to 

the physics of electrons, atoms or crystals, these are not going 

to lead to a physics related filling factor. In any case, Haldane 

suggested,  

                                     (7) 

where m is an odd integer. The daughter states are produced 

by taking, 

1

1

1

p
m 

                                 (8) 

where p1 is an integer. The grand daughter states are given by 

2
1

1

1

1

p
p

m




  and the grate-grand daughter states are  
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conductivity for  =1, von Klitzing et al. [4] were able to get 

 =
m

1
                 



  

3
2

1 1

1

1

1

p
p

p

m







  

 

which can be continued up to pn. The present family members 

are determined by n. For m=1, the first member is =1, for 

n=1, m=1 and p1=2 has two daughters =2/3+ and 2- 

depending on the sign in (8). In the extreme quantum limit, 

<1, so that we may leave out the =2- which occurs at lower 

fields. For n=2, m=1, p1=p2=2, the continued fraction gives 

5/7++, 5/3+-, 3/5-+ and 3-- and for n=3, p1=p2=p3=2 the 

fractions are 12/17+++, 8/13+-+, 8/11-++, 4/7--+, 12/7++-, 

8/3+--, 8/5-+-, 4--- and so on and so forth. There is no way to 

predict the n value of the present generation so that we do not 

know where to stop producing fractions but it seems that 

there is abundant fractionalization in the odd denominator 

regime. We try the next odd integer, m=3. Then (7) gives 

=1/3 and (8) gives 2/7+ and 2/5- for n=1 and for n=2, we get, 

5/17++, 5/13+-, 3/7--, 3/11-+ and for n=3, p1=p2=p3=2 we 

have12/41+++, 12/31++-, 8/29+-+, 8/19+--, 8/27-++, 

8/21-+-, 4/15--+ and 4/9---. In Fig. 1 we show the Haldane's 

hierarchy for m=1 parents. These numbers are not based on 

spin or orbit or Landau levels or two dimensionality or Hall 

effect. These are not even the random numbers. Hence these 

are not used to explain the quantum Hall effect. There is no 

particular reason why the continued fraction should be 

related to the physics of the problem. 

 

 
Fig. 1. Haldane's hierarchy for =1. 

 

III. SHRIVASTAVA'S HIERARCHY 

The cyclotron frequency is defined in terms of the 

magnetic field as, 

 

=eB/mc                                        (9) 

 

In the present case of single-particle current, we expect, 

 

yeV                                     (10) 

This expression is completely consistent with the current 

(4). This is related to the flux quantization which is consistent 

with the charge of e, as the longitudinal resistivity does show 

zeroes at certain values of the magnetic field. From (9) and 

(10), we write,  

 

yeV
mc

eB



                               (11) 

 

which upon multiplying by e/h gives, 

 

h

Ve

mc

Be y
22

2



                             (12) 

 

which describes the current in the x-direction so that upon 

taking into account the gyromagnetic ratio, we find, xI = 

h

Vge

mc

Be
g

y
22

2

1

22

1



. For L=0, g=2, it reduces to  

 

h

Ve
I

y

x

2

                                 (13) 

 

which describes the correctly quantized current for =1. 

Hence (10) is consistent with (13). We examine the width of 

the plateau in the transverse resistivity in field units as a 

function of temperature from the experimental measurements 

of Hall effect in GaAs/AlGaAs heterostructures. We find that 

for =1 the width B approaches zero at Tc1=6.50.5 K. 

Similarly, for =2/3, Tc2/3=1.10.1K and for =1/3 we obtain 

Tc1/3=1.70.2 K. Corresponding to every fraction there is a 

transition. We consider the spin as well as the orbital motion, 

so that, 

gjj=gss+gll=(1/2)(gl+gs)j+(1/2)(gl-gs)(l-s)     (14) 

Multiplying both sides of this equation by j = l+s and 

taking eigen values we find, 

 

gjj(j+1) =(1/2) (gl+gs)j(j+1) +(1/2)(gl-gs)[l(l+1)-s(s+1)]    

                         (15) 

which upon substituting s=1/2 gives, 

12 




l

gg
gg ls

lj                    (16) 

for j= 2/1l . For gs=2, gl=1 we find. 

12

1
1




l
g                            (17) 

This is the most important relation which is the correct 

relation for the understanding of fractions which are 

observed in the quantum Hall effect experiments. In fact it is 

not necessary to use the relations (14)-(17) because, an 

alternative proof exists. The value of (17) is exactly the same 

as, 

 

12

12






l

j
g                         (18) 
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where j= sl  . Note that usually only the plus sign is 

conserved in the Dirac Hamiltonian. A slight modification 

shows that both signs are correct. That is done by introducing 

the negative spin which was not done by Dirac but was 

studied in later years. We assume the Landau level quantum 

number n=1. For l=0, g +=2, g-=0 so that we find = 1
2

1
g  

and 0. For l=1, s=1/2, negative sign, g-=2/3 so that =1/3 and 

for l=1, s=1/2, positive sign gives =2/3. All of the 101 

fractions found from the formula turn out to be the same as in 

the experimental data subject to the condition that all of the 

fractions for spin 1/2 are tabulated first. These are found in 

the Stormer's experimental data. We must postulate 

two-particle states to explain some of the data and some are 

resonances. When all of these fractions are considered, there 

emerges the concept of single-particle plateaus as well as 

"electrons clusters" for which the spin is different from 1/2. 

Due to polarization, the cluster spin can be quite large. The 

hierarchy produced from (18) for both signs is given in Fig. 1 

on the right hand side picture. The starting mother has l=0, 

the daughter has l=1, the grand daughter has l=2, etc which 

builds the family and the clusters of families [7]. 

 

IV. THE DIRAC EQUATION 

The Dirac equation, obtained from the Schroedinger 

equation by using the space-time symmetry and by 

linearizing the momentum is given by, 

 

(c.p + mc2 ) (x, t) = iħ
t


(x, t)            (19) 

                                                    

where m is the rest mass of the electron, p is the linear 

momentum, c is the velocity of light and x, y , z  and  are 

anticommuting 4 × 4 Dirac matrices. The free-particle energy 

solutions are, 

 

E±(p) = ±(c2 p2 + m2 c4 )1/2                     (20) 

                                                                 

where positive sign is associated with the electron and 

negative energy solutions correspond to the positron. A 

classical electron moving in a circular orbit has an orbital 

angular momentum, L=r × p and a magnetic dipole moment, 

=-er × v/2, where r is the coordinate of the electron, p its 

linear momentum, v is the velocity and e is the charge. 

Therefore, the ratio of the magnetic moment to the dipole 

moment is =/L=-e/2m. Since the electron has spin, it 

produces a correction to the ratio of the magnetic moment to 

the dipole moment so that the corrected value becomes 

=-ge/2m. Actually, the Dirac equation does not conserve 

angular momentum unless spin is introduced. Therefore, spin 

effects are assigned to the Dirac equation. The spin angular 

momentum is ħ/2. The electron is a charged particle so that 

electromagnetic field is associated with it. The correction to 

the g value due to this effect is given in terms of the fine 

structure constant as g=2(1+ /2), where 

=e2/ħc=1/137.03599976(50). The electromagnetic 

correction to the g value is written as 

g-2=/=0.0023193043737(82). In this way, the g value is 

related to the charge of the electron. Later on, we will 

discover that g values describe the fractional charge. It is 

possible to argue that ħ and c are constants so that only the 

charge of the particle is affected by the angular momentum. 

The unit of resistivity may be fixed by 

h/e2=oc/2=25812.807572(95) ohms, with o=4×10-7NA-2 

exactly with c in units of m/s. This means that the Dirac 

equation predicts spin which enters in the ratio of magnetic 

moment to angular momentum in the form of a g value which 

can be described in terms of e, ħ and c to great accuracy. The 

speed of light is now known exactly, c= 2.99792458×1010 

cm/s. We write,
12

12






l

j
g

 which for j=ls gives 

12

)2/1(

2

1






l

sl
g . In the expression for energy in a magnetic 

field we have H.S so that Sz can give a factor of ½. 

 

 
Fig. 2. Shrivastava's hierarchy which explains the experimental data 

correctly. 

 
We consider the spin as well as the orbital motion so that, 

 

gjj=gss+gll = 2

1
(gl+gs)j+

2

1
(gl-gs)(l-s)            (21) 

 
We include the bound electrons as well as the free 

electrons which have finite orbital angular momentum 

quantum numbers. Multiplying both sides of the above 

equation by j=l+s and taking eigen values, we find, 

gjj(j+1)= 
2

1
(gl+gs)j(j+1)+

2

1
(gl-gs)[l(l+1)-s(s+1)].   (22) 

Multiplying j by j gives j2

 which we write as j(j+1).  

Similarly, (l-s)(l+s)=l2

 – s
2  = l(l+1)-s(s+1). In this equality at 

l= s, the first bracket, the second value as well as the 

l(l+1)-s(s+1) are all zero so that we obtain 0=0 but such a 

situation never arises since s is half integer and l is integer. 

Upon substituting s=1/2, we get, 

gj=gl±
12 



l

gg ls
                              (23)
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for j=l±
2

1
. For gs=2, gl=1, we find, 

 

g± =1±
12

1

l
                                  (24) 

                                                               

or, 

g±= 
12

112





l

l
                                (25) 

                                                                 

For s=-1/2, (note the – sign) the g value is, 

 

g-=2l/(2l+1)                                     (26) 

                                                                                     

and for s=+1/2,(note the + sign) it is, 

 

g+= 
12

)1(2





l

l
                             (27) 

 

 

2

1
g± = 

12

)2/1(





l

sl
                        (28) 

                                                                                     

The Zeeman Hamiltonian is written as H=gBB.J so that 

the resonance frequency is ħc=gBB where the Bohr 

magneton is B=eħ/2mc so that the cyclotron frequency is, 

 

c= (1/2)g±eB/mc                            (29) 

                                                                                        

Hence the charge e can be replaced by an effective charge, 

 

eeff= 
2

1
g±e                                 (30) 

                                                                       

For negative spin, s=-1/2, and l=0, the expression (28) 

gives, (1/2)g+=0, which shows that there are particles of zero 

charge, and for positive spin, s=+1/2, l=0, eeff=e, predicts a 

charge of eeff=1 in units of electron charge. This means that 

there are electrons with the usual charge, e. For s=-1/2, l=1, 

the charge is 1/3 and for s=+1/2, l=1, the charge is 2/3. Thus 

the electron splits into fractionally charged particles.  In fact, 

all of these values are the same as those measured in the 

experimental work of Stormer. In actual semiconductor 

heterostructures, there are electron clusters so that higher 

values of the spin such as 3/2 and 5/2 also become allowed 

and the spin projection quantum number sz may be equal to ½ 

or higher so that, instead of (1/2)g±, other values such as 

(3/2)g± will arise. This opens the possibility of a large number 

of spin states. 

 

V. THE DIRAC MATRICES 

The Dirac equation describes particles of charges –e and 

+e which are called the electron and the positron, respectively. 

When mc2 term is left out, fermions of zero mass are 

produced. In our calculation, since there are two g values, g±, 

there are four eigen values for spin ½ instead of 2. Two 

values occur for spin ½ with g+ and two more values occur 

for spin ½ with g-. All of these four values belong to the 

electron. If positrons are also considered, there will be 8 

eigen values. Considering the electron states only, the matrix 

we introduce is, 

 

M= 

































Hg

Hg

Hg

Hg

B

B

B

B









)2/1(000

0)2/1(00

00)2/1(0

000)2/1(

 

 

 

so that the Dirac equation with electron states only appears 

as, 

 

(mc2+c.p)=E+M 

 

where, 

 

1=





















0001

0010

0100

1000

, 2=

























000

000

000

000

i

i

i

i

, 

3=

























0010

0001

1000

0100

, =4=

























1000

0100

0010

0001

. 

 

Thus we find that there is a new anticommutator, 

 

1M+M1=G1 

 

where, 

 

G1=

























000)2/1(

00)2/1(0

0)2/1(00

)2/1(000

o

o

o

o

g

g

g

g

 

 

with go=g+-g-=
12

2

l

s
. For l=0, (1/2)go=s so that G1 becomes 

a spin only matrix, 

G1(l=0)=

























000

000

000

000

s

s

s

s

 

Similarly,  

2M+M2=G2 

G2=

























000)2/(

00)2/(0

0)2/(00

)2/(000

o

o

o

o

gi

gi

gi

gi
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We introduce the negative as well as the positive spin so 

that,



  

and at l=0 we obtain the spin only matrix, 

 

G2(l=0)=

























000

000

000

000

is

is

is

is

 

 

and the anticommutator with 3 is independent of l, 

 

3M+M3=0. 

 

Thus the matrix M which gives the 4 × 4 matrix for s=1/2 

and anticommutes with the Dirac matrices except, 

 

M-M=0 

 

which is a commutator. In this way we find the commutation 

properties of the new matrices. When the dimensions are 4 × 

4 for the electron only, another 4 × 4 elements are needed for 

the positron so that if it gives the electrons as well as the 

positrons, it will have to be a 8x8 matrix. Whereas, Pauli used 

only 2x2 matrices for the electron, they became 4 × 4 Dirac 

matrices due to space time symmetry, we have to use 8x8 

matrices because of s as well as –s for the electron as well as 

for the positron. 

For the charged particles in an electromagnetic field the 

Dirac hamiltonian is changed to, 

 

H=mc2+c.(p-
c

e
A) +e(x, t)                    (31) 

                                       

where A is the vector potential of the electromagnetic field, 

which reduces the linear momentum and  is the scalar 

potential. The wave function is four dimensional but it is 

sufficient to take only two at a time, 

 

[
m2

1
j| p-

c

e
A(x, t)|2-

mc

e

2


jjBj(x)]=(E-mc2).   (32) 

                  

Therefore, the magnetic moment of the particle is eħ/2mc. 

The magnetic moment of the proton calculated by using the 

proton mass does not agree with the experimental value. 

Therefore, it is necessary to correct the expression for the 

magnetic moment. Accordingly, 

 

proton=
mc

eg p

2


                                   (33) 

                                            

with gp=5.58 for the proton. Similarly, there is a need to 

introduce the g value for the neutron, gn=-3.826 which gives 

the correct value of neutron magnetic moment. According to 

(23), the magnetic moment consists of a spin part and an 

orbital part. The spin and orbital gyromagnetic factors are 

gl=1, gs=5.585 for the proton and gl=0, gs=-3.826 for the 

neutron. The magnetic moment of the proton for negative 

sign, j=l-(1/2) is p=[1- 2.29/(j+1)]j and for the positive sign, 

j=l+(1/2), p=j+2.29. Similarly, for the neutron, j=l-(1/2), 

n= [1.91/(j+1)] j and for j=l+(1/2), n=-1.91. The expression 

(23), thus gives the correct values for the magnetic moments 

of the proton and the neutron. When Lande first introduced 

the splitting factor, it had only one value, 

 

g= 1+
)1(2

)1()1()1(





JJ

SSLLJJ                (34) 

                                         

but according to (23) there are two separate values, one for 

the spin and the other for the orbit. In the case of the electron 

and the positron very accurate values of (g-2)/2 are available 

but only for the l=0 state so that only one value is measured. 

Many different orbital states are not available by this method. 

According to us a whole series of values arise as we change 

the value of the orbital angular momentum. The free electron 

with g=2 has only one value for g and hence only one value 

for the magnetic moment but we find a series of values. 

Changing the value of l leads to a change in s such that the 

angular momentum is conserved but this type of phenomenon 

has not been discussed in the literature. In particular, 

fractions such as those given by (26) and (27) lead to a 

fractional charge given by (30). If we ignore the correction to 

the charge, we must correct the mass so that the correct 

cyclotron frequency is obtained, 

 

c = 
])2/1/([ gmc

eB                       (35) 

                                              

Not only that the mass of the electron is enhanced but there 

are double the number of values. For (1/2)g-=1/3, the mass 

must be replaced by 3m and for (1/2)g+=2/3, the mass 

becomes 3m/2. Therefore, either the charge or the mass 

completely changes compared with the free electron value. 

 

VI. DIRAC POINTS 

The crossing points in the band structure are often called 

Dirac points particularly when the energy versus wave vector 

looks almost a straight line. In the Hamiltonian there is the 

usual kinetic energy which is k2/2m so that the apparently 

looking straight lines are parabolic. In any case, the crossing 

points have been named Dirac points. In our calculation these 

points often have a small gap and these are Schroedinger 

points. In our Dirac equation there is no similarity with 

Novoselov’s Dirac points [9], [10] which are interesting by 

themselves. A linearization of the bands may be a nice 

simplification.  

 

VII. CONCLUSION 

The hierarchy of states in the quantum Hall effect is built 

by changing the angular momentum. In the Haldane’s work, 

the hierarchy is made by a random number not matched with 

the data. There is effect on the Dirac equation in terms of 

increased eigen values because of the two signs of spin in the 

total angular momentum. The entire data can be explained by 

two signs in the g values. The key formula that emerges has 

double the number of eigen values. All our calculated values 

agree with Stormer’s data [8]. 
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