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 

Abstract—Based upon the basis of Lie super algebra B(0,1), 

the super coupled Burgers equation hierarchy with 

self-consistent sources was presented. Furthermore, the infinite 

conservation laws of above hierarchy were given. 

 

Index Terms—Super coupled Burgers hierarchy, self-consistent 

sources, conservation laws, lie super algebras.  

 

I. INTRODUCTION 

Soliton equations with self-consistent sources have been 

receiving growing attention in recent years. Physically, the 

sources may result in solitary waves with a non-constant 

velocity and therefore lead to a variety of dynamics of 

physical models. For applications, these kinds of systems are 

usually used to describe interactions between different 

solitary waves and are relevant to some problems of 

hydrodynamics, solid state physics, plasma physics, etc. Ma, 

Strampp and Fuchssteiner systematically applied explicit 

symmetry constraint and binary nonlinearization of Lax pairs 

for generating the solution equation with sources [1], [2]. 

Furthermore, Ma presented the soliton solutions of the 

Schr dinger equation with self-consistent sources [3]. The 

discrete case of using variational derivatives in generating 

sources was discussed [4]. 

It is known that conservation laws play an important role 

on discussing the integrability for soliton equations. Since the 

discovery of infinite conservation laws for KdV equation by 

MGK [5], lots of methods have been developed to find them. 

This should be mainly due to the contribution of Wadati et al. 

[6]. Conservation laws also play an important part in 

mathematics as well. 

With the development of soliton theory, super integrable 

systems associated with fermi variables have been receiving 

growing attention. Various methods have been developed to 

search for new super integrable systems, Lax pairs, soliton 

solutions, symmetries and conservation laws, et al. [7]-[18]. 

In 1997, Hu proposed the supertrace identity and applied it to 

establish the super Hamiltonian structures of super-integrable 

systems [7]. Then Professor Ma gave a systematic proof of 

super trace identity and presented the super Hamiltonian 

structures of super AKNS hierarchy and super Dirac 

hierarchy for application [8]. The super coupled Burgers 

hierarchy and its super-Hamiltonian structure were 

considered [9]. Recently, Yu et al considered the binary 

nonlinearization of the super AKNS hierarchy under an 
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implicit symmetry constraint [10] and the Bargmann 

symmetry constraint and binary nonlinearization of the super 

Dirac systems [11]. Meanwhile, various systematic methods 

on classical integrable systems have been developed to obtain 

exact solutions of the super integrable such as the inverse 

transformations, the B
cklund and Darboux 

transformations , the bilinear transformation of Hirota and 

others [19]-[21]. 

This paper is organized as follows. In section 2, the method 

for establishing super integrable soliton hierarchy with 

self-consistent sources by using Lie super algebra B (0, 1) 

was presented. For application, the super coupled Burgers 

hierarchy with self-consistent sources was obtained in 

Section III. In Section IV, the infinite conservation laws of 

the super coupled Burgers hierarchy were given. 

 

II. A KIND OF SUPER INTEGRABLE SOLITON HIERARCHY 

WITH SELF-CONSISTENT SOURCES 

In the following. Consider a basis of Lie super algebra B(0, 

1) [8]. 
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We introduce the loop algebra (0,  1)B  as follows: 

 

(0,  1) { | ( ) (0,  1)}.B A A R B                  (2) 

 

where the loop algebra (0,  1)B  is defined by span 

{ | 0, (0,1)}.n n A B    
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where 1 1 1( , , ) , ( , )T

s p pu u u U u u e u e     , 

 

( ,  )( 1,  2, , ), ( ,  )i i i iu u x t i p x t     are field 

variables defining on ,  ,  ( ) (0,  1).i ix R t R e e B      

From the spectral problem (3), the compatibility condition 

gives rise to the well-known zero curvature equation 

 

[ ,  ] 0,  1,  2, ,.
nt xU V U V n                (4) 

 

The general scheme of searching for the consistent 
( )nV  and 

generating a hierarchy of nonlinear equations was proposed 

as follows [8]. We solve the equation 
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and search for ( ,  ) (0,  1),n u B    such that 
( )nV  can be 

constructed by 
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       (7) 

 

where (1 5)ni i    are linear functions of 
,, ,m m mA B C  

, .m m   

We consider the super trace identity of super integrable 

systems [8] 
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Defining a scalar ( ,  )H H u   by the equation 
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The sets { }mH  prove the conserved densities of (4). The 

Hmailtonian form with 
1nH 
 can be written as 
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H
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where L  is a recursion operator and J  is a symplectic 

operator, and  
1
, ,

p

T

u u u
   

   . 

According to (3) and (5), we consider the auxiliary linear 

problem. For N  distinct , 1, , ,j j N   the following 

systems result from (1) 
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Based on the results in [8], we show that the following 

equations 
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where 
j  are constants. Equation (13) determines a finite 

dimensional invariant set for the flows (11). 

For (12a), it is known that 
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where Str denotes the super trace of a matrix and 
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From (10) and (13), a kind of super integrable hierarchy 

with self-consistent sources can be present as follows 
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III. THE SUPER COUPLED BURGERS HIERARCHY WITH 

SELF-CONSISTENT SOURCES 

The super Tu spectral problem associated with Lie super 

algebra B(0,1)is given by [9] 
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where   is a spectral parameter, q and r are even variables, 

 and  are odd variables [9]. 
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the co-adjoint equation associated with (18) [ , ]xV U V gives 
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Let us associate the problem (18) with the following 

auxiliary problem 
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The compatible conditions of the spectral problem (18) 
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Here 
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Therefore, the super coupled Burgers soliton hierarchy (26) 
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is a super symplectic operator, and nH  is given by (28). 
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2 ,
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r

t xx x x x xq q q q
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q q q r qr

r rr qq

q r r q

q q r r
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

        


        

 

(30) 

which possesses a Lax pair of U defined in (18) and 
(2)V defined by 

2 21 1
2 2

(2) 2 21 1
2 2

.

0

x x
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q qr q r q r

V q r q q qr r
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          
      

 

Next we will establish the super coupled Burgers hierarchy 

with self-consistent sources. Consider the linear system 

1 1 1

2 2 2

3 3 3

1

1 ,

0

j j j

j j j

j j jx

q r

U r q

    

    

    

       
      

          
            

  (31a) 
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.
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      

         
            

 (31b) 

For the system (31), we consider the 
1

j
N

H
u uj



 

in the 

Lie super algebra (0,  1)B  and obtain 

1 2

2 2 1 1

2 3

1 3

Str( ) 2 ,

, ,Str( )
.

2 ,Str( )

2 ,Str( )

U
j q

U
j j r

U
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U
j

u



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
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
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
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
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        
     
          

  (32) 

where 
1( , , ) ( 1,2,3).T

i i iN i     

According to the results in (17), the super coupled Burgers 

hierarchy with self-consistent sources is present 

1 2

2 2 1 1
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1 3

2 ,
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            

     (33) 

The first nontrivial integrable super coupled Burgers 

hierarchy with self-consistent sources is its second flow 
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(34) 

when 0,    it is the well known nonlinear coupled 

Burgers equation with self-consistent sources. So system (33) 

is a novel super integrable equation hierarchy. 

 

IV. CONSERVATION LAWS FOR THE SUPER COUPLED 

BURGERS HIERARCHY 

In what follows, we will construct conservation laws of the 

super coupled Burgers equation. Introduce the variables:   

32

1 1

, ,K G


 
                        (35) 

where ( ) 0, ( ) 1.p K p G   From (12), we have 
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(36) 

We expand ,  K G  in powers of 
1  as follows 
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where ( ) 0,  ( ) 1.j jp k p g   Substituting (37) into (36) and 

comparing the coefficients of the same powers of  , we 

obtain 
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 (38) 

and a recursion formula for nk  and ng , 
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Because of  

1, 1,

1 1

,
x t
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we derive the conservation laws of (30) 
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where 

2 21
0 0 1 0 1 0 02

1
0 0 0 1 0 0 0 12

, ,

, .x x

A c c qr c q B c c c q c

C c c q c r c c c c r c

   

     

       

         
 

Assume that 

( 1) , ( ) ,q r K A B C K G            then (41) can 

be written as 
t x  , which is the right form of conservation 

laws. We expand  and   as series in powers of  according 

with the coefficients, which are called conserved densities 

and currents respectively 
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where 0 1,  c c  are constants of integration. Then the first two 

conserved densities and currents are 
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The recursion relations for 
n
 and 

n
 are 
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where nk  and ng can be calculated from (39). The infinitely 

conservations laws of (39) can be easily obtained in (35)-(43) 

respectively. 
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