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Bargmann Symmetry Constraint and Binary
Nonlinearization of Super Guo Hierarchy

Si-Xing Tao

Abstract—An explicit Bargmann symmetry constraint is
computed and its associated binary nonlinearization of Lax
pairs is carried out for the super Guo hierarchy. Under the
obtained symmetry constraint, the n-th flow of the super Guo
hierarchy is decomposed into two super finite —dimensional
integrable Hamiltonian systems, which defined over the super
symmetry manifold R**N with the corresponding dynamical
variables x and t,. The integrals of motion required for Liouville
integrability are explicitly given.

Index Terms—Symmetry constraint, binary nonlinearization,
super guo hierarchy, super finitee-dimensional integrable
hamiltonian systems.

. INTRODUCTION

For almost twenty years, much attention has been paid to
the construction of finite-dimensional integrable systems
from soliton equations by using symmetry constraints. Either
(2+1)-dimensional soliton equations [1], [2] or (1+1)
-dimensio -nal soliton equations [3], [4] can be decomposed
into two compatible finite-dimensional integrable systems. It
is known that a crucial idea in carrying out symmetry
constraints is the nonlinearization of Lax pairs for soliton
hierarchies. The nonlinearization of Lax pairs is classified
into mono-nonlinearization [51-[7] and binary
nonlinearization [8], [9].

The technique of nonlinearization has been successfully
applied to many well-known (1+1)-dimensional soliton
equations, such as the AKNS hierarchy [3], the KdV
hierarchy [4] and the Dirac hierarchy [10]. But there are few
results on nonlinearization of super integrable systems,
existing in the literature. But there are few results on
nonlinearization of super integrable systems, existing in the
literature. Studies provide many examples of super symmetry
integrable systems, with super dependent variables and/or
super independent variables [11]-[15]. Only very recently,
nonlinearization were made for the super AKNS hierarchy ,
the super Dirac hierarchy and their corresponding super finite
dimensional hierarchies were generated [16]-[18]. Li and
Dong presented the super Hamiltonian structures of the super
Guo hierarchy [19]. In this paper, we would like to consider
the binary nonlinearization of the super Guo hierarchy.

This paper is organized as follows. In the next section, we
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will recall the super Guo soliton hierarchy and its super
Hamiltonian structure. Then in Section Ill, we compute a
Bargmann symmetry constraint for the potential of the super
Guo hierarchy. In Section 1V, we apply the binary
nonlinearization method to super Guo hierarchy, and then
obtain super finite-dimensional integrable Hamiltonian
hierarchy on the super symmetry manifold R*V12V  whose
integrals of motion are explicitly given.

Il. THE SUPER GUO HIERARCHY

The super Guo spectral problem associated with Lie super
algebra B (0,1) is given by

AV og+r o«
o =UpU=2|q-r -2 B}
B -a 0
i ¢1
U= a ;¢:<¢2>v (1)
B b3

where A is a spectral parameter, g and r are even variables,
and @ and g are odd variables(see [20] ). Taking

1 A B+C p

V:E(B_c A 5>,
1) —-p 0

the co-adjoint equation associated with (1) V, = [U, V] gives
A, =rB—qC +%,8p +%a6,
B, =1"'C—rA—ap+;p5,
4 C.=1"'B—qAd—sap—3p5, @)
Py = %A‘lp —%aA —%ﬁB —%,BC +%q6 +%r6,
8 =—3A'6+2pA-2aB +aC+3qp —57p,

If we set

A=Yi50 AiA', B=Y50 BiA', C=X5 CiA, p=Xi0 pi ',
=20 51'”" 3)

then (2) is equivalent to

I{Ai+1,x =1Bit1 —qCiy1 + %Ble + %a5i+1r
Biy1 = qA; + Cj, +%“Pi + %351"
Ciy1 =74; + By + %“Pi - %.851: @)
piv1 = ad; + BB; + BC; + 2py — q6; — 16,
8i+1 = BA; —aB; + aC; + qp; —rp; — 26;;.
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which results in the following recurrence relations

(Bis1,—Ciy1,6i41, _Pi+1)T = L(B;,—C;, ;, _Pi)T'

5
A =071 (rBl- —qC, +Bp, +1a5i),i >0, ©
2 2
where
qo~'r —0+qd7'q Liz Ly
—90—7ro71 —ro 1 L L
I = a ra_lr rd ?1 23 Log (6)
—a+ L0 r —a+f07°q L3z L3,
—f—ad'r B-—ad'q Lz Lis

. 1 1 — 1 1 -
W|thL13 25B+Eqa 1a,L14=—Ea—Eqa 1ﬁ,
11
201370 h
1 -1 1 -1
L33=—26+Eﬁa a,L34=—Eﬁa ,B—q+7‘,

1 1
Ly; = E'B —57"6 a,Lyy =

1, 1
L13=_Eaa a+q+T,Ll4=26+Eaa ﬁ

Upon choosing the initial conditions
By=Co = po=6p=0, Ag=1,

all other A;, B;, C;, p;,6;(i = 1) can be worked out by the
recurrence relations (5). The first few results are as follows:

A1 =0,By=q,C =7,p1=a,6 =P,
1 2 1 2
AZ = _Eq +Er _a.B'BZ = rX'CZ =qx P2 = Zax'
62 = _Zﬁw A3 = QO — zaxﬁ + zaﬂxi

1 3 1 2
—ﬁﬁx—iq +-qr° —qap,

BB = xx + aay 2

1 1
C; = xx+aax+[3,8x——q r+=r3—rap,

2
1
p3 =40 + @B+ 2qP, + 1 + 21p, —qua + Er20(,
1, 1,
53 = 4ﬁxx +qca+ anx —na— Zr(xx —Eq ﬁ +Er ﬁ

Let us associate the spectral problem (1) with the following
auxiliary problem

b, =V =ATV)-¢, U]

with

B+ C p; '
-4, & |1,

A;
1
v = Z?:()E(Bi -G
5; —Pi 0
where the minus symbol “—"denotes taking the non-positive
part in the power of A.
The compatible conditions of the spectral problem (1) and
the auxiliary problem (7) are

U, —v+[U,y™] =0, ®)

which infer the super Guo soliton hierarchy
> 8n)7 0= 0. (9)

Here u, =K, in (9) is called the n-th flow of this
hierarchy,

When a = 8 = 0, the super integrable hierarchy (9) can be
reduced to the hierarchy which was constructed by Guo in
[22], so we call (9) as the super Guo hierarchy.

Using the super trace identity

1
U, = K, = (Cn+1'Bn+1lEpn+1'_

= [ str (VZ—Z) dx = (17 %N)Str (‘;—Zv) (10)

where Str means the super trace [20,21], we have
Bi+1
—Citq
8it1
—Pi+1

= “H,H, = [-2*2dx,i > 0. (11)

Therefore, the super soliton hierarchy (9) can be written as
the following super Hamiltonian form:

SHy

u, =J o’ (12)
where

0 -1 0 0

1 0 O 0

J= .

0o 0 0 -=

2

0 0 71 0

2

is a super symplectic operator, and H,, is given by (11).
The first non-trivial nonlinear equations of the super Guo
hierarchy (9) is given by its second flow

1 1
qtz =T« + aay + ﬁﬁx - qur + 57'3 - T(Xﬁ,

1 1
Tty = Qux +aa, — .BBX - Eq?, + EC[T‘Z - q(lﬁ,
1 1
atz = Zaxx + quﬁ + q,Bx + ETX:B + r.Bx 4_q a+ _T a,
1 1
.Btz = _2.8xx _qua_qax +_Txa+rax Zq ,B_Z 2,8'
(13)
which possesses a Lax pair of U and V(® defined by
-2 2 2 @) @)
1 2=+ —af V' Vi
V@A =2 (-t —q +r BY (2) . (14)
Bt -28 V) 0
where
m—(q +r)A 1t + qx + 7, 111(32) =al ™! + 2a,,
2 2
Uy ==t 43¢ — it +ap Vg = BAT - 2B,,
VP =—a1 ™ - 2a,.

I1l. BARGMANN SYMMETRY CONSTRAINT OF SUPER GUO
HIERARCHY

In order to compute a Bargmann symmetry constraint, we
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consider the following adjoint spectral problem of the —/1]-‘1 —q+r pB Yy

spectral problem (1): =2\l—qg—-r ' —all¥y ) (21)
—a -8 0/ \¥3

N | =

. -2t —q+r B 31
l/)x=_UStlp=5 —-q—-r /1_1 4 ‘P"P: 1:02 ) and

—a ') 0 Y3
(15) ¢1j ¢11'
by; =V®(y 1) P2
where St means the super transposition. The following result ¢§] ( ) ¢§]
j/ ¢ g

is a general formula for the variational derivative with respect
to the potential u (see[3] for the classical case).

Lemma 1 [17]-[19] Let U (u, A) be an even matrix of order . A BiE G b1
m+n depending on u,u,, i, and a parameter A . =Xl (Bi -G A & || 9 ),
Suppose that ¢ = (¢,, ¢,)" and ¥ = (ih,,,)" satisfy the S; —pi 0/ \¢3
spectral problem and the adjoint spectral problem
Py S Py
b = U D, = Uy, (16) Yy | ==(®)" (wa)| vy
Vs /, P3;
where @, = (¢1,+, $m) and e = Py, -, Pp) are even 4, —B.+C &\ [V
eigenfunctions, and ¢, = (b1, Pan) AN Yy = _ Ly g <_Bi ) A —pi> V2 |, (22)
(Wmatr - Pmin) are odd eigenfunctions. Then the 2 ! _p, -5, 0 /\uy,

variational derivative of the parameter A with respect to the

potential u is given by where 1<j <N and Ay,---,Ay are N distinct spectral

parameters. Now for the system (21) and (22), we have the

u ou - -
s _ We 1P ;;/’H)(ﬁ)‘f" 17y  following symmetry constraints:
T (e
5 N o 4
—H, =)' 1yvi—, k=0. 23
where we denote otk T A=Y 3)
_ _ The symmetry constraints in the case of k = 0 is called a
p(v) = {0, vis an evenvariable, (1) Bargmann constraint(see[9]). If taking k =0, =, =
1,vis an odd variable. 1 . .
fﬁ (1) 1 —2j P2;)dx, then it leads to an expression for
By Lemma 1, it is not difficult to find that the éotential u,i.e.
+
192+ W2y ((a=10W, ) + (¥, 0.)),
2 _ 1 Y1¢2 — oy (19) I
su 2B\ Y13+ Y3y | r =¥z, 1) = (¥1,®2)), 24)
Vg3 = Vad @ =~ (W, 05— (W5, 0,)),
1
where E = fﬁ(lpﬁpl —,¢,)dx . If we consider zero B =5 (W1, @3) +(¥3,D3)),

boundary conditions lim, |, ¢ = lim,,3 = 0, then we ) )
can obtain a characteristic property: a recurrence relation for ~ Where we use the following notation

the variational derivative of A: r T
D = (Pi1, - Pin) Vi = Wi, -+, ¥iv) ', 151, 2, 3.

A

oA _ 4 84
LE - /15”, (20) and (-,-) denotes the standard inner product of the Euclidean
82 . . space RV,
where £ and 5. are given by (5) and (19), respectively.
Let us now discuss the two spatial and temporal systems:
b1, b1 IV. BINARY NONLINEARIZATION OF SUPER GUO
by | = U(u,lj) ba HIERARCHY
b3; b3; In this section, we want to perform binary nonlinearization
* for the Lax pairs and adjoint Lax pairs of super Guo
l,-_l qg+r a\ [P hierarchy. To this end, let us substituting (24) into the Lax
= % q-r _,11.—1 B || ¢z |, pairs and adjoint Lax pairs (21) and (22), and then we obtain
B —a 0/ \¢3 the following nonlinearized Lax pairs and adjoint Lax pairs:
Yy U2, b1 by
Yy | = Ut (w )| ¥y $25 | =U(@ )| ¢z
ZTN V3 b3;/ b3;
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At G+T @\ (¢
=sla-7 -4 §( o)
g —a 0/ \%3
2%, L2Y,
Yo | =-US (@A) | ¥z
Vs X ¥s3j
=4t =q+F B\ [y
=\ -g-7 A' —all¥y) (25)
— -5 0 ) \¥3
and
b1 b1
B2 | =VO(@,4)[ ¢z
b3/, ¢3;
. A Bi+G B\ [Py
= 2 ;’l 0 ]_n-H Bi ? Ci A 6 (l)Z] ’
5, -5, 0/ \¢3
Yy N Yy
by | =-(v®™)" (@ 4) ¢1‘
V3 " ¥sj
A —Ei + a SL 1,01]'
= ; ?o’lj_nﬂ -B; -G 4 —pi || ¥ |, (26)
—pi ~6; 0/ \¥s

where 1 < j < N and P means an expression of P(u) under
the explicit constraint (24). Note that the spatial part of the
nonlinearized system (25) is a system of ordinary differential
equations with an independent variables x, but for a given
n(n = 2), the t,-part of the nonlinearized system (26) is a
system of ordinary differential equations. Obviously, the
system (25) can be written as

11
Dy, = EA b, + E(lpz,‘lbﬁ‘ibz

1
- Z ((l‘UZ' (D3) - (l‘U3' (Dl))d)3;

1 1
Dy, = E('l”1;¢’z>¢’1 - EA D,

1
+ 7 (W1, @3) + (W3, D,)) D3,

1
D3, = 1 (W1, @3) + (W3, P,)) Py
1
+ Z((q’z,¢3) —(¥3, 1)) D,

1,1
Pix = _EA ¥ — 5(9”1,(172)'1’2

1
+ Z((%,(Pg) + (W3, ;) W5,

1 1
Yox = _E(lpz'dﬁ)llﬁ + 5/1_1[1]2

1
+ 7 Wy, @3) — (W3, P1)) ¥,

1
Y3, = Z (o, @3) — (W3, @)W

— 2 (1, @3) + (3, 0,0, (27)

where A = diag(44, -+, A,,,). Then system (25) or (27) can be
represented as the following Hamiltonian form:

o, = o _ oy _ oy
1x — awy’ 2x — aw,’ 3x T aws’ )8
o _oH o (28)

Vi =—gg Yox =~ 55 Fax =55

where
1, 1, 1
Hl:E(A q’1,‘1§1)—§(/1 W2,<D2)+5(11’2,(D1)('P1,<D2)
— 2 (W, @3) — (W5, @) (W1, @) + (W3, @,)).

When n = 1, the system (26) is exactly the system (25)
with t; = x. When n = 2, the system (26) is

1/, o 1., 1., .=
P, = E(A ? _qu +§r2 - aﬂ) @,

1, 1
+§((q + AN+ G, +7)D, +§(aA +2d,)P;,

1
=5 (@ =M = G +7) 2y

1
_E(A_ %q —ap) P, + = (,3/\_ - 25x)¢’3'

(Dz,tz

1, . ~ 1
B3, =5 (BAT! = 2B, )1 — S (@A +22,)®,,
—ap)¥,

1 1, -
—5(@=PN" =G + 7)Y, +5 (A

1 1. 1.
Wie, = _E(A z _qu +§rz

- ZB'X)BU&

L
Vo, = =5 (@@ + A+, + 7))

1 ~ 1
(A2 _1z2 1220 = (A1 ~
+ > (A 747 +57 0(,8) y, > (@nt+2a,)¥;,

1, a— ~ 15— 5
Wi, = =5 @A +28)%; —5 (BN = 2B,)¥,, (29)

where §,7, @, denote the functions q,7,a, 8 defined by
the explicit constraint (24), and §,, .., &, B, are given by

~ 1 1
qx=—§(/1 9”1,‘1’2)"‘5(/1 ¥,, P1)
1
+Z (W1, @) — (W1, D) (W1, @1) — (¥, P3)),
I 1
rxzz(/l l1”1,C13’2)'|'5(/1 ¥,, dq)

1
_Z ((lpl! q)Z) + <qj1t(p2))(<lpli¢1) - (IPZJq)Z))J

1
dx = _Z (<A_1lp2' ¢)3> - <A_11P3’d)1))

1
+§ (W1, @1) — (P2, D) (W, @;) — (W3, Pq)),
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1
_Z«A_llppq)s) + (A5, @,))
+2 (W1, @1) — (P, @) (), B3) + (W3, 85)). (30)

Bx

which are computed through using the spatial constrained
flow (27). Then system (29) can be represented as the
following super Hamiltonian form:

@ __0Hp __0Hp 0H>
1x — oy’ 2x — oy’ 3x w3’ 31
_ 0H» _ J0Hy _0Hp ( )
qll’x - 0P P P2x T 0P, P P3x T 03 !

where

1 - 1 -
E(A '1’1,(1)1)_5(/1 ¥,, @,) —
(¥, 1) —

HUENRSE
(Wa, ®2)) + (W, @3) — (W3, 0)) -
E(lpl, P3) + (11"3;(1)2))(('11’1:@)1) — (¥, P,)) +
7(¥2, DAY, By) + 5(/1_1 Wy, @1 KWy, ;)
(W 5) — (W, BATW, ) + (AW, )
— (A7, @3) — (4710, D) (), @) + (¥, 82)).

In addition, the characteristic property (20) and the
recurrence relations (5) ensure that

~ 1 i s .

Ajyr = E((A W, P1) — (AW, @,)),i 20,

~ 1 . . i

B = 5(<A W, D;) + (AW, @)),0 =0,

~ 1 i s .

Ciy1 = E((A Wy, @) — (AW, @,)),i =0,  (32)
~ 1 i i .
Piv1 = = 5 (AW, ®3) — (A7'W3,@4)),i 2 0,

~ 1 i o B

8iy1 = 5((/\ Wy, @d3) + (A5, @,)),i = 0.

Then the co-adjoint representation equation V, = [U,V]
remains true. Furthermore, we know that V2 = [T, V2] is
also true. Let

F = Str2, (33)

Then it is easy to find that F, = 0. That is to say, F is a
generating function of integrals of motion for the system (25)
or (27). Due to F = ), E,A", we obtain the following
formulas of integrals of motion:

+ 2p; ~n hn 2. (34)

Substituting (32) into the above formulas of integrals of
motion, we obtain the following expression of F,(m = 0):

F0=1F1

2 B =5 (1, @1) — (¥, @),

1, 1] 1
EM '1”1,‘1’1)—5(/1 q’z.¢2)+§(q’2,¢1)('}’1.¢2>
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—i((q’z"%) — (W3, P[Py, P3) + (W5, P,))5

1 1
E == (/l_n+1 VY, d1) — 5 (AT, @,) +

— 1 . .
Z S (U710, @) — (47419, 0,)) x
i=1

(AT @) — (AT, @) +
n—1 1
Z z (A7, @, AT, @)
i=1

+ (A7, o (ALY, )

)—\

n—1
Z Hy,, @3) — (A7, ) x
i=1

(AT, @g) + (AT, ) )Y n > 3.

Z”
(3)

On the other hand, let us consider the temporal part of
nonlinearized system (26). Making use of (32) and (35), the
system (26) can be represented as the following super
Hamiltonian form:

— 0Fn 41 — 0Fn 41 — 0Fn41
Ltn vy’ 2tn v, ’ 3itn ¥3 ’ (36)
_ 0Fn 41 _ 0Fn 41 _ 0Fn 41
lplt - » B2ty — T » B3ty — .
n o n o n i
1 2 3

This can be checked pretty easily. For example, we can
show one equality in the above system as follows:

1 ~ ~ _ .
Por, = = Zimoy (B + C)A™ W + XL,
1 _ ,
i=05 AT

%AiA—n+i\p2 _

=0 % (A7, @ )N +

3

(AW, @) — (AT, @AY,

N

i=0

n
1 1 )
FS AT, Y (AT, b))
i=0
(A, @, )N,

_aFn+1

=0, (37)

In order to show the Liouville integrability for the

constrained flows (25) and (26), we need to prove the

commutative propertity of motion {F,,},,, , under the
corresponding Poission bracket

3 N
(F.G) = ZZ( JdF 0G
i=1j=1 a(pl] alpl]
P(¢y) pQpy) 9F 96
—(=1DP¥i’(=1) 205 30, —). (38)
At this time, we still have an equality V, = [V™, 1],

and After a similar discussion, we know that E, (m = 0) are
integrals of motion for the system (26) or (36), which implies
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d
{Fm+1!Fn+1} :aFm+1: 0, m,n= 0. (39)

The above equality (39) shows that E, (m = 0) are in
involution in pair under the Poisson bracket (38).
In addition, similar to [16], we know that

fie = Y1cbir + Vo bor + P3Pz, 1 < k < N. (40)

are integrals of motion for (25) and (26). It is not difficult to
verify that 3N functions {F,,}2_, and {f; }¥_; are involution
in pair. To show the functional independence of the 3N
functions {F,,}2"; and {f,}¥_,, we can use the method in
[16], or the technique by ma etal[23,24]. Therefore, the 3N
functions {F,,}2", and {f;,}¥_,, are functional independent
over some region of the super symmetry manifold R*VI2V,
Now, all of the above analysis gives the following theorem.

Theorem 1 Both the spatial and temporal flows (25) and
(26) are Liouville integrable Hamiltonian systems defined on
the super symmetry manifold R*¥I2¥ | which possess 3N
functionally independent and involutive integrals of motion
{F,}2N, and {f}.}}_,defined by (35) and (40).
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