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High Energy Hadronic Collisions Using Neural Network
and Genetic Programming Techniques

Moaaz A. Moussa

Abstract—Artificial Intelligence (Al) techniques of artificial
neural networks (ANN) and evolutionary computation of
genetic programming (GP) have recently been used to design
and implement more effective models. The artificial neural
network (ANN) model has been used to study the charged
particles multiplicity distributions for antiproton-neutron

(P —n) and proton-neutron ( P —N) collisions at different lab

momenta. The neural network model performance was also
tested at non-trained space (predicted) and matched them
effectively. The trained NN shows a good fitting with the
available experimental data. The NN simulation results prove a
solid existence in modeling hadronic collisions. Genetic
Programming (GP) model is a flexible and powerful technique
that can be used for solving the same problem. In this paper,
genetic programming (GP) has been used to discover a function
that calculates the charged particles multiplicity distribution of
created pions for the same interactions at high energies. The
predicted distributions from the GP-based model are compared
with the available experimental data. The discovered function
of GP model has proven an excellent matching with the
corresponding experimental data.

Index Terms—Artificial intelligence technique, genetic
programming, hadronic collisions, machine learning (ML),
multiplicity distribution, neural network, pion production.

I. INTRODUCTION

The theories and ideas concerning multiparticle production
go back to the late of 1930's with a significant interlude at
Fermi's statistical theory of particle production [1]. One of
the basic interactions in high-energy physics (HEP) is the

antiproton-neutron (P~ —n) and proton-neutron ( P —N)

interactions particularly above the pion production threshold
(1 GeV approx.). Extremely high energy collisions are
required to get the fundamental particles close enough to
study and understand the interactions between them [2]-[7].
Different models are provided for the hadron structure
[8]-[11], such as the three-fireball model [12], fragmentation
model [13]-[15] quark models [16]-[18], and many others.
The application of artificial intelligence (or the machine
learning) such as genetic programming (GP) and neural
network (NN) has a strong presence in the high energy
physics [19]-[23]. The effort to understand the interactions
of fundamental particles requires complex data analysis for
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which machine learning (ML) algorithms are essential.
Machine learning (ML) algorithms are becoming more useful
as alternate approaches to conventional techniques [24].

Parallel to the theoretical approach based on different
views, development in the artificial intelligence (Al) and
evolutionary computation field have given the neural
networks and genetic programming a strong presence in
high-energy physics [25]-[27]. Neural networks are
composed of simple interconnected computational elements
operating in parallel. These artificial neural networks (ANNS)
are trained, so that a particular input leads to a specific target
output.

The complicated behavior of many interactions due to the
nonlinear relationship between the interaction parameters
and the output often becomes more complicated. In this sense,
ML techniques such as artificial neural network [28], genetic
algorithm [29] and genetic programming [30] can be used as
alternative tool for the simulation of these interactions
[18]-[22], [31]-[36].

The motivation of using a GP approach is its ability to
evolve a model based entirely on prior data without the need
of making underlying assumptions. Another motivation for
applying such machine learning approach (e.g. GP) is simply
the lack of knowledge (in most cases) about the mathematical
dependence of the quantity of interest on the relevant
measured variables [37].

In the present work, we illustrate the NN and GP
techniques to model the multiplicity distribution of charged
pions for different beams at different high energies in
hadronic collisions. The history of studies of these
interactions is therefore very long and extremely interesting
from both the experimental and theoretical view point [38,
39]. Making use of the capability of the artificial intelligence
and the evolutionary computation, the present work uses the
NN and GP to model the charged particles multiplicity

distribution for ( p"-n) and ( p—n) interactions at

different lab momenta. Also, GP has been used to discover a
function that calculates the multiplicity distribution for
different beams. The rest of the paper is organized as follows;
The NN model is described in Sections Il, 11l. Section VI
gives a review to the basics of the GP technique. Section V
explains how genetic programing is used on modeling the
hadron-hadron collisions. The results and discussions of both
models are explained in Section VI.

Il. ARTIFICIAL NEURAL NETWORKS (ANNS)

An ANN is made up of a number of simple and highly
interconnected computational elements. There are many
types of ANNSs, but all of them have three things in common:
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individual neurons (processing elements), connections
(topology), and a learning algorithm. The processing element
calculates the neuron transfer function of the summation of
weighted inputs. A simple neuron structure is shown in the
Fig. 1. The neuron transfer function, f is typically step or

sigmoid function that produces a scalar output (N ) as in Eq.

().
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Fig. 1. Neuron model.
where, I, , W, , b are the i th input, the 1 th weight and

b the bias respectively.

A network consists of one or more layers of neurons. A
layer of neurons is a number of parallel neurons. These layers
are configured in a highly interconnected topology.

Neural network can be trained to perform a particular
function by adjusting the values of the connections (weights)
between elements. Training in simple is to make a particular
input leads to a specific target output. The weights are
adjusted, based on a comparison of the output and the target,
until the network output matches the target. Typically many
such input/target pairs are used, in this supervised learning, to
train a network.

The proposed ANNSs in this paper was trained using the
Levenberg—Marquardt  optimization  technique.  This
optimization technique is more powerful and flexible than the
conventional gradient descent techniques [40]-[44]. The
Levenberg—Marquardt updates the network weights using the
following rule,

TRAINING OF THE H-H-ANN

AW =TI +4) 1376

where, J is the Jacobian matrix of derivatives of each error
with respect to each weight, £¢ is a scalar, changed

adaptively by the algorithm and € is an error vector.

The only requirement for this method is a considerably
large memory for large problems. The initial training weights
were also chosen using the Nguyen-Widrow random
generator in order to speed up the training process [40]-[44].

IV. GENETIC PROGRAMMING OVERVIEW

Genetic programming is an extension to Genetic
Algorithms (GA). GA is an optimization and search
technique based on the principles of genetics and natural
selection. A GA allows a population composed of many
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individuals (chromosome) to evolve under specified
selection rules to a state that maximizes the “fitness” (i.e.
minimizes the cost function). The GP is similar to genetic
algorithms but unlike the latter its solution is a computer
program or an equation as against a set of numbers in the GA.
A good explanation of various concepts related to GP can be
found in Koza (1992) [30], [45].

Fig. 2. Tree representation of the equation (X + X2 — X) .

In GP a random population of individuals (equations or
computer programs) is created, the fitness of individuals is
evaluated and then the ‘parents’ are selected out of these
individuals. The parents are then made to yield ‘offspring’s’
by following the process of reproduction, mutation and
crossover. The creation of offspring’s continues (in an
iterative manner) until a specified number of offspring’s in a
generation are produced and further until another specified
number of generations are created. The resulting offspring at
the end of all this process is the solution of the problem. The
GP thus transforms one population of individuals into
another one in an iterative manner by following the natural
genetic operations like reproduction, mutation and crossover.
Each chromosome (individual) contributes with its own
genetic information to the building of new ones (offspring)
adapted to the environment with higher chances of surviving.
This is the basis of genetic algorithms and programming [46].
The representation of a solution for the problem provided by
the GP algorithm is a tree (Fig. 2).

V. GENETIC PROGRAMMING TECHNIQUE

Genetic programing is a technique that mimics natural
evolution and improvement of life through reproduction to
find a computer program that solves a particular task. It is
inspired by the Darwinian principle “the most fit
chromosome duals have the greatest chance of surviving and
passing into the next generation” [47].

Genetic programing searches the space of computer
programs, or the space of functional forms specified by
compositions of functions from a function set acting on
terminals from the terminal set. The chromosome represents
the model of the problem solution using trees. A tree is a
model representation that contains nodes and leaves. Nodes
are mathematical operators from the specified function set.
Leaves are terminals from the specified terminal set [46].
Table I shows some typical functions and terminals used in
GP.
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TABLE I: TYPICAL FUNCTIONS ANDTERMINALS USED IN GP.

Functions Terminals
Mathematical Sin, cos, exp, log
Variables X,y

Looping For, Repeat
Boolean AND, OR, NOT
Random constant Random
Conditional IF, THEN-ELSE
0-arity functions Rand, go-left
Arithmetic -5
Constant values 3,045

Trees are manipulated through the basic genetic operators:
crossover (sexual recombination operation), mutation
(asexual operation), and reproduction.

Crossover (Sexual Recombination) Operation: In the
crossover or sexual recombination operation, two parental
programs are probabilistically selected from the population
based on fitness. The two parents participating in crossover
are usually of different sizes and shapes. A crossover point is
randomly chosen in the first parent and a crossover point is
randomly chosen in the second parent. Then the sub-tree
rooted at the crossover point of the first, or receiving, parent
is deleted and replaced by the sub-tree from the second, or
contributing, parent. Crossover is the predominant operation
in genetic programing (and genetic algorithm) work and is
performed with a high probability.

Mutation Operation: In the mutation operation, a single
parental program is probabilistically selected from the
population based on fitness. A mutation point is randomly
chosen, the sub-tree rooted at that point is deleted, and a new
sub-tree is grown there using the same random growth
process that was used to generate the initial population. This
asexual mutation operation is typically performed sparingly
(with a low probability of, say, 1% during each generation of
the run).

Reproduction Operation: The reproduction operation
copies a single chromosome, probabilistically.

In order to apply the genetic programing technique to a
problem, one must first perform the preparatory steps and the
executional steps [48]. The preparatory steps are the
problem-specific and domain-specific steps that are
performed by the human user prior to launching a run of the
problem-solving method. The executional steps are
automatically executed during a run of the problem-solving
method.

The five major preparatory steps for the basic version of
genetic programming require a human user to specify:

1) the set of terminals,

2) the set of primitive functions,

3) the fitness measure,

4) certain GP parameters (see Table I1) for controlling
the run, and
a termination criterion and method for designating the
result of the run.

The fitness function defines the quality of chromosome as
a solution to the problem. The dataset is divided into two
parts: one is for training and the second for validation. The
training dataset is used to obtain the model and the validation

5)
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dataset is used to measure the accuracy of the model with data
that was not used in training. The fitness function evaluates
how accurate the mathematical model.
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Fig. 3. Comparison between the experimental and simulated multiplicity

distribution of pions P(nCh) for p-n collisions at a) 50, b) 80

GeV/c and for p-n collisions at, ¢) 100, d) 200 GeV/c: (—) NN model,
(4 ) experimental data.
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TABLE Il: DEFINITION OF THE GP PARAMETERS.

GP Parameters Definitions

Populations size The number of chromosomes in a population
generation size; The number of iterations of the
main selection/operation loop

The maximum depth of an expression tree (this is
necessary since crossover tend to increase the
average size of a population, and this
inadvertently increase the run time of each
generation).

How often mutation occur

How often crossover occur

How often reproduction occur

Maximum tree size

Mutation rate
Crossover rate
Reproduction rate

VI. RESULTS AND DISCUSSION

The NN and GP models are implemented using the
experimental data to simulate the multiplicity distributions of

charged pions P(n,,) at P, =50,80 Gev/c for p~ —n

and P_ =100,200,400 GeV/c for p—n collisions. The

results of these calculations are represented in Fig. 3, 4, 5,
and 6 along with the experimental data [49]-[52] which show
good agreement with the corresponding experimental data.
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Fig. 4. Comparison between the experimental and predicted multiplicity

distribution of pions P (Ng,) for P —N collisions at 400 GeV/c:
(—) NN model, (‘l) experimental data

Using the input-output arrangement,  different
networkconfigurations were tried to achieve good mean
squared error (MSE) and good performance for the network.

It consists of an input layer (P, N, ), one hidden layers of

10 neurons, respectively, and an output layer consisting of
one neuron P(ng, ) . The transfer function where chosen to

be a tan sigmoid function for the hidden layer and a pure line
function for the output layer, the trained NN model shows
almost exact fitting. It is worth mentioning that the NN
training data did not include the experimental data at

P, =400 GeV/c. This means that the NN model not only

simulated the trained (Fig. 3) observations but also predicted
the multiplicity distribution of charged pions for untrained
observations as shown in Fig. 4. Then, the ANN technique is
able to exactly model for multiplicity distribution at lab
momenta for different beams in hadrons collisions.

The GP model was constructed with training sets and the
accuracy was verified by the test sets. In order to generate the
GP model, we have implemented the GP steps (Fitness
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evaluation, reproduction, crossover and mutation) that were
mentioned in Section V. Table Il lists the values of the
control parameters and the set of function genes that are used
in modeling the multiplicity distribution. Our discovered
function is generated using the obtained control GP
parameters as follows,

P(n.,) = (sart(log((X + (5/Y))))/( (sart(exp(X)/((Y/7)
+(3/2)) + ((sqrt(Y)(1+ 2)) + ((2/5) + (2/3))))),

where the actual parameters are,
X = number of charged pions(n,), Y = lab momentum

( B ). After simplification and putting the corresponding
values, the final form of the discovered equation becomes,

P(ng,) = (sart(log((n, +(5/ P)))/((sart(exp(n ., ))
I((PLIT) +(3/2))) +((sqrt(P. )(1+2)) + ((2/5) +(2/3)))))

This discovered function has been used to predict the
multiplicity distribution of pions for antiproton-neutron

P —n and proton-neutron P — N interactions.
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Fig. 5. Comparison between the experimental and simulated multiplicity

distribution of pions P(I’lch) for p7 —N and p—-n collisions
ata) 50, b) 80, c) 100, d) 200 GeV/c: (—) GP model, (‘l) experimental data

TABLE Il LISTS THE VALUES OF THE CONTROL PARAMETERSUSED IN
MULTIPLICITY DISTRIBUTION

GP Parameters Values
Generations 1000
Populations 40000

Function set *,1,-, +, log, sqrt, sin, cos
{constant, X,Y}

SSE

Terminal Set
Fitness function
Selection method Elites, rank and roulette
0.01

0.9

Mutation rate

Crossover rate

Simulation results based on GP model, for modeling the
multiplicity distribution of pions for antiproton-neutron

( p-n) and proton-neutron ( p—n )

at P, =50,80 Gevicforp -n and P, =100,200 GeV/c
for p —n (the training cases) are given in Fig. 5 (a), (b), (c),
(d) respectively. While Fig. 6 describes the predicted results
of P, =400 GeV/c for p —ninteraction, we notice that the
curves (for training cases and prediction case) obtained by
the trained GP model show a best fitting to the experimenEiaI
data in the five cases. Then, the GP model is able to exactéjl
model for multiplicity distribution at different lab momenta
for different beams in h-h collisions. If the large dataset is
used in training, the best GP model is obtained.

interactions
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Fig. 6. Comparison between the experimental and predicted multiplicity

distribution of pions P(nch) for P —N collision at 400 GeVic: (—)
GP model, (‘) experimental data
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