
  

 

Abstract—Artificial Intelligence (AI) techniques of artificial 

neural networks (ANN) and evolutionary computation of 

genetic programming (GP) have recently been used to design 

and implement more effective models. The artificial neural 

network (ANN) model has been used to study the charged 

particles multiplicity distributions for antiproton-neutron 

( np 
) and proton-neutron ( np  ) collisions at different lab 

momenta. The neural network model performance was also 

tested at non-trained space (predicted) and matched them 

effectively. The trained NN shows a good fitting with the 

available experimental data. The NN simulation results prove a 

solid existence in modeling hadronic collisions. Genetic 

Programming (GP) model is a flexible and powerful technique 

that can be used for solving the same problem. In this paper, 

genetic programming (GP) has been used to discover a function 

that calculates the charged particles multiplicity distribution of 

created pions for the same interactions at high energies. The 

predicted distributions from the GP-based model are compared 

with the available experimental data. The discovered function 

of GP model has proven an excellent matching with the 

corresponding experimental data. 

 
Index Terms—Artificial intelligence technique, genetic 

programming, hadronic collisions, machine learning (ML), 

multiplicity distribution, neural network, pion production. 

 

I. INTRODUCTION 

The theories and ideas concerning multiparticle production 

go back to the late of 1930's with a significant interlude at 

Fermi's statistical theory of particle production [1]. One of 

the basic interactions in high-energy physics (HEP) is the 

antiproton-neutron ( np 
) and proton-neutron ( np  ) 

interactions particularly above the pion production threshold 

(1 GeV approx.). Extremely high energy collisions are 

required to get the fundamental particles close enough to 

study and understand the interactions between them [2]–[7]. 

Different models are provided for the hadron structure 

[8]–[11], such as the three-fireball model [12], fragmentation 

model [13]–[15] quark models [16]–[18], and many others. 

The application of artificial intelligence (or the machine 

learning) such as genetic programming (GP) and neural 

network (NN) has a strong presence in the high energy 

physics [19]–[23]. The effort to understand the interactions 

of fundamental particles requires complex data analysis for 
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which machine learning (ML) algorithms are essential. 

Machine learning (ML) algorithms are becoming more useful 

as alternate approaches to conventional techniques [24].  

Parallel to the theoretical approach based on different 

views, development in the artificial intelligence (AI) and 

evolutionary computation field have given the neural 

networks and genetic programming a strong presence in 

high-energy physics [25]-[27]. Neural networks are 

composed of simple interconnected computational elements 

operating in parallel. These artificial neural networks (ANNs) 

are trained, so that a particular input leads to a specific target 

output.  

The complicated behavior of many interactions due to the 

nonlinear relationship between the interaction parameters 

and the output often becomes more complicated. In this sense, 

ML techniques such as artificial neural network [28], genetic 

algorithm [29] and genetic programming [30] can be used as 

alternative tool for the simulation of these interactions 

[18]–[22], [31]–[36]. 

The motivation of using a GP approach is its ability to 

evolve a model based entirely on prior data without the need 

of making underlying assumptions. Another motivation for 

applying such machine learning approach (e.g. GP) is simply 

the lack of knowledge (in most cases) about the mathematical 

dependence of the quantity of interest on the relevant 

measured variables [37]. 

In the present work, we illustrate the NN and GP 

techniques to model the multiplicity distribution of charged 

pions for different beams at different high energies in 

hadronic collisions. The history of studies of these 

interactions is therefore very long and extremely interesting 

from both the experimental and theoretical view point [38, 

39].  Making use of the capability of the artificial intelligence 

and the evolutionary computation, the present work uses the 

NN and GP to model the charged particles multiplicity 

distribution for ( np 
) and ( np  ) interactions at 

different lab momenta. Also, GP has been used to discover a 

function that calculates the multiplicity distribution for 

different beams. The rest of the paper is organized as follows; 

The NN model is described in Sections II, III. Section VI 

gives a review to the basics of the GP technique. Section V 

explains how genetic programing is used on modeling the 

hadron-hadron collisions. The results and discussions of both 

models are explained in Section VI. 

 

II. ARTIFICIAL NEURAL NETWORKS (ANNS) 

An ANN is made up of a number of simple and highly 

interconnected computational elements. There are many 

types of ANNs, but all of them have three things in common: 
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individual neurons (processing elements), connections 

(topology), and a learning algorithm. The processing element 

calculates the neuron transfer function of the summation of 

weighted inputs. A simple neuron structure is shown in the 

Fig. 1. The neuron transfer function, f  is typically step or 

sigmoid function that produces a scalar output ( n ) as in Eq. 

(1). 
             

bIwfn
i ii                                  (1) 

 

 
Fig. 1. Neuron model. 

 

where,
iI ,

iw , b  are the i th input, the i th weight and 

b the bias respectively. 

A network consists of one or more layers of neurons. A 

layer of neurons is a number of parallel neurons. These layers 

are configured in a highly interconnected topology. 
 

III. TRAINING OF THE H-H-ANN 

Neural network can be trained to perform a particular 

function by adjusting the values of the connections (weights) 

between elements. Training in simple is to make a particular 

input leads to a specific target output. The weights are 

adjusted, based on a comparison of the output and the target, 

until the network output matches the target. Typically many 

such input/target pairs are used, in this supervised learning, to 

train a network. 

The proposed ANNs in this paper was trained using the 

Levenberg–Marquardt optimization technique. This 

optimization technique is more powerful and flexible than the 

conventional gradient descent techniques [40]-[44]. The 

Levenberg–Marquardt updates the network weights using the 

following rule, 
 

eJIJJW TT 1)(    

 

where, J  is the Jacobian matrix of derivatives of each error 

with respect to each weight,  is a scalar, changed 

adaptively by the algorithm and e  is an error vector. 

The only requirement for this method is a considerably 

large memory for large problems. The initial training weights 

were also chosen using the Nguyen–Widrow random 

generator in order to speed up the training process [40]-[44]. 
 

IV. GENETIC PROGRAMMING OVERVIEW    

Genetic programming is an extension to Genetic 

Algorithms (GA). GA is an optimization and search 

technique based on the principles of genetics and natural 

selection. A GA allows a population composed of many 

individuals (chromosome) to evolve under specified 

selection rules to a state that maximizes the ―fitness‖ (i.e. 

minimizes the cost function). The GP is similar to genetic 

algorithms but unlike the latter its solution is a computer 

program or an equation as against a set of numbers in the GA. 

A good explanation of various concepts related to GP can be 

found in Koza (1992) [30], [45]. 

 

      

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Tree representation of the equation )( 2 xxx  . 

 
In GP a random population of individuals (equations or 

computer programs) is created, the fitness of individuals is 

evaluated and then the ‗parents‘ are selected out of these 

individuals. The parents are then made to yield ‗offspring‘s‘ 

by following the process of reproduction, mutation and 

crossover. The creation of offspring‘s continues (in an 

iterative manner) until a specified number of offspring‘s in a 

generation are produced and further until another specified 

number of generations are created. The resulting offspring at 

the end of all this process is the solution of the problem. The 

GP thus transforms one population of individuals into 

another one in an iterative manner by following the natural 

genetic operations like reproduction, mutation and crossover. 

Each chromosome (individual) contributes with its own 

genetic information to the building of new ones (offspring) 

adapted to the environment with higher chances of surviving.  

This is the basis of genetic algorithms and programming [46]. 

The representation of a solution for the problem provided by 

the GP algorithm is a tree (Fig. 2). 

 

V. GENETIC PROGRAMMING TECHNIQUE 

Genetic programing is a technique that mimics natural 

evolution and improvement of life through reproduction to 

find a computer program that solves a particular task. It is 

inspired by the Darwinian principle ―the most fit 

chromosome duals have the greatest chance of surviving and 

passing into the next generation‖ [47].  

Genetic programing searches the space of computer 

programs, or the space of functional forms specified by 

compositions of functions from a function set acting on 

terminals from the terminal set. The chromosome represents 

the model of the problem solution using trees. A tree is a 

model representation that contains nodes and leaves. Nodes 

are mathematical operators from the specified function set. 

Leaves are terminals from the specified terminal set [46]. 

Table I shows some typical functions and terminals used in 

GP.  
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TABLE I: TYPICAL FUNCTIONS ANDTERMINALS USED IN GP. 

Functions Terminals 

Mathematical Sin, cos, exp, log 

Variables X, y 

Looping For, Repeat 

Boolean AND, OR, NOT 

Random constant Random 

Conditional IF, THEN-ELSE 

0-arity functions Rand, go-left 

Arithmetic +, -, *, / 

Constant values 3, 0.45 

 

Trees are manipulated through the basic genetic operators: 

crossover (sexual recombination operation), mutation 

(asexual operation), and reproduction. 

Crossover (Sexual Recombination) Operation: In the 

crossover or sexual recombination operation, two parental 

programs are probabilistically selected from the population 

based on fitness. The two parents participating in crossover 

are usually of different sizes and shapes. A crossover point is 

randomly chosen in the first parent and a crossover point is 

randomly chosen in the second parent. Then the sub-tree 

rooted at the crossover point of the first, or receiving, parent 

is deleted and replaced by the sub-tree from the second, or 

contributing, parent. Crossover is the predominant operation 

in genetic programing (and genetic algorithm) work and is 

performed with a high probability. 

Mutation Operation: In the mutation operation, a single 

parental program is probabilistically selected from the 

population based on fitness. A mutation point is randomly 

chosen, the sub-tree rooted at that point is deleted, and a new 

sub-tree is grown there using the same random growth 

process that was used to generate the initial population. This 

asexual mutation operation is typically performed sparingly 

(with a low probability of, say, 1% during each generation of 

the run). 

Reproduction Operation: The reproduction operation 

copies a single chromosome, probabilistically.  

In order to apply the genetic programing technique to a 

problem, one must first perform the preparatory steps and the 

executional steps [48]. The preparatory steps are the 

problem-specific and domain-specific steps that are 

performed by the human user prior to launching a run of the 

problem-solving method. The executional steps are 

automatically executed during a run of the problem-solving 

method. 

The five major preparatory steps for the basic version of 

genetic programming require a human user to specify:  

1) the set of terminals, 

2) the set of primitive functions, 

3) the fitness measure, 

4) certain GP parameters (see Table II) for controlling 

the run, and 

5) a termination criterion and method for designating the 

result of the run. 

The fitness function defines the quality of chromosome as 

a solution to the problem. The dataset is divided into two 

parts: one is for training and the second for validation. The 

training dataset is used to obtain the model and the validation 

dataset is used to measure the accuracy of the model with data 

that was not used in training. The fitness function evaluates 

how accurate the mathematical model.  

 

 
 

 
      

 
 

 
 

Fig. 3. Comparison between the experimental and simulated multiplicity 

distribution of pions   
)( chnP

 for  
np 

  collisions at a) 50, b) 80 

GeV/c and for   
np 

  collisions at, c) 100, d) 200 GeV/c: (—) NN model, 

( ) experimental data. 



  

TABLE II: DEFINITION OF THE GP PARAMETERS. 

 

VI. RESULTS AND DISCUSSION 

The NN and GP models are implemented using the 

experimental data to simulate the multiplicity distributions of 

charged pions )( chnP  at 80,50LP GeV/c for np 
 

and 400,200,100LP GeV/c for np    collisions. The 

results of these calculations are represented in Fig. 3, 4, 5, 

and 6 along with the experimental data [49]-[52] which show 

good agreement with the corresponding experimental data. 

 

 
Fig. 4. Comparison between the experimental and predicted multiplicity 

distribution of pions 
  

)( chnP
  
for 

  
np   

  
collisions at 400 GeV/c: 

(—) NN model,  ( ) experimental data 

 

Using the input-output arrangement, different 

networkconfigurations were tried to achieve good mean 

squared error (MSE) and good performance for the network. 

It consists of an input layer ),,( chLab nP one hidden layers of 

10 neurons, respectively, and an output layer consisting of 

one neuron )( chnP . The transfer function where chosen to 

be a tan sigmoid function for the hidden layer and a pure line 

function for the output layer, the trained NN model shows 

almost exact fitting. It is worth mentioning that the NN 

training data did not include the experimental data at 

400LP  GeV/c. This means that the NN model not only 

simulated the trained (Fig. 3) observations but also predicted 

the multiplicity distribution of charged pions for untrained 

observations as shown in Fig. 4. Then, the ANN technique is 

able to exactly model for multiplicity distribution at lab 

momenta for different beams in hadrons collisions.  

The GP model was constructed with training sets and the 

accuracy was verified by the test sets. In order to generate the 

GP model, we have implemented the GP steps (Fitness 

evaluation, reproduction, crossover and mutation) that were 

mentioned in Section V. Table III lists the values of the 

control parameters and the set of function genes that are used 

in modeling the multiplicity distribution. Our discovered 

function is generated using the obtained control GP 

parameters as follows,  

 

X))/((Y/7)(sqrt(exp((5/Y))))/(+(X(sqrt(log()( chnP
    

(2/3))))), +((2/5) + 2))+(1((sqrt(Y)/+(3/2))+  

 

where the actual parameters are, 

X = number of charged pions )( chn , Y = lab momentum 

(
LP ). After simplification and putting the corresponding 

values, the final form of the discovered equation becomes,  

 

)) t(exp(n))))/((sqrP(5/ + (n(sqrt(log()( chLchchnP       

(2/3)))))+((2/5)   +2))+)/(1 ((sqrt(P+(3/2)))+/7)P /(( LL
 

 

This discovered function has been used to predict the 

multiplicity distribution of pions for antiproton-neutron 

np 
  and proton-neutron np   interactions. 

      

 

 

 

GP Parameters Definitions 

Populations size The number of chromosomes in a population 

generation size;  The number of iterations of the 

main selection/operation loop 

Maximum tree size 

 

 

 

Mutation rate 

Crossover rate  

Reproduction rate    

The maximum depth of an expression tree (this is 

necessary since crossover tend to increase the 

average size of a population, and this 

inadvertently increase the run time of each 

generation). 

How often   mutation occur 

How often  crossover occur 

How often  reproduction occur 
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Fig. 5. Comparison between the experimental and simulated multiplicity 

distribution of pions  )( chnP   for  np 

   and  np    collisions 

at a) 50, b) 80, c) 100, d) 200 GeV/c: (—) GP model, ( ) experimental data 

 
TABLE III: LISTS THE VALUES OF THE CONTROL PARAMETERSUSED IN 

MULTIPLICITY DISTRIBUTION 

GP Parameters Values  

Generations 1000 

Populations 40000 

Function set *, /, -, +, log, sqrt, sin, cos 

Terminal Set {constant, X,Y} 

Fitness function SSE 

Selection method Elites, rank and roulette 

Mutation rate 0.01 

Crossover rate 0.9 

 

Simulation results based on GP model, for modeling the 

multiplicity distribution of pions for antiproton-neutron 

( np 
) and proton-neutron ( np  ) interactions 

at 80,50LP  GeV/c for np 
 and 200,100LP  GeV/c 

for np   (the training cases) are given in Fig. 5 (a), (b), (c), 

(d) respectively. While Fig. 6 describes the predicted results 

of 400LP  GeV/c for np  interaction, we notice that the 

curves (for training cases and prediction case) obtained by 

the trained GP model show a best fitting to the experimental 

data in the five cases. Then, the GP model is able to exactly 

model for multiplicity distribution at different lab momenta 

for different beams in h-h collisions. If the large dataset is 

used in training, the best GP model is obtained. 

 

 
Fig. 6. Comparison between the experimental and predicted multiplicity 

distribution of pions
  

)( chnP
  
for   np 

  collision at 400 GeV/c:  (—) 

GP model, ( ) experimental data 
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