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Abstract—In this paper, we propose a new discontinuous 

Galerkin finite element (DG) method to solve Troesch’s 

problem, which is highly sensitive for large values of the 

parameter. This twopoint boundary value problem has been 

heavily studied since 1960, however, only a few papers have 

provided a reliable solution for high sensitivity. Therefore, we 

developed the DG method which has been proved its efficiency 

for many decades to be a new numerical solver. We 

demonstrate through computational results compared with 

those computed by other methods, that the discontinuous 

Galerkin method provides a quite efficient, accurate and 

reliable solution. Thus, the DG method is an attractive and 

competitive alternative to other numerical and semi-analytical 

techniques to solve highly sensitive nonlinear problems. 

 

Index Terms—Troesch’s problem, discontinuous galerkin 

method, nonlinear boundary value problem. 

 

I. INTRODUCTION 

Troesch’s problem, which arises in the investigation of the 

confinement of a plasma column by radiation pressure, was 

initially introduced and formulated by Weibel [1] and 

Troesch [2]. Troesch’s problem is defined by 

 

'' sinh( )u u                                (1) 

 

subject to  

 

(0) 0,      (1) 1u u                             (2) 

 

Roberts and Shipman [3] combined the multipoint, 

continuation and perturbation methods to provide an accurate 

solution of the problem for λ≤5. Jones [4], Troesch [5], Scott 

and Watts [6] and Kubicek [7] used the shooting method for 

solving the problem. Chiou [8] applied a non-iterative 

method known as method of transformation groups to solve 

the problem which appeared by that time to be simple and 

less-time consuming compared to older techniques. Scott [9] 

presented the invariant embedded method and Scott and 

Watts [10]-[11] presented a combined superposition and 

quasi-linearization procedure as other alternatives to solve 

the problem. In 1976, an outstanding paper by Roberts and 

Shipman [12] appeared providing a closed form solution to 

the problem in terms of Jacobian elliptic functions. Snyman 

[13] implemented the inverse shooting method and has been 

successful in solving this problem for large value of λ. 
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Snyman’s, Roberts’ and Scott’s results turned to be 

considered as benchmark solution for recent studies. 

In our paper, we adopt the discontinuous Galerkin (DG) 

method to solve the Troesch’s problem. This DG method can 

overcome the difficulty of the problem in term of high slope 

and concavity for large λ near x=1. Unlike the standard finite 

element method, the DG variational (primal or mixed) 

formulation involves some jump terms due to the choice of 

the solution and/or its derivative (and/or higher-order 

derivative) induced from the integration by parts on the 

boundary elements. In fact, researchers use the term 

numerical flux to define the solution on the boundaries. The 

choice of the numerical flux is the most delicate and crucial 

aspect of the definition of the DG method as it affects its 

stability and accuracy, as well as properties such as sparsity 

and symmetry of the stiffness matrix.  

The paper is organized as follows: In §II we present the 

discontinuous Galerkin method applied to the Troesch’s 

problem. In III we show several numerical results for 

different values of λ and we conclude with a few remarks in 

IV.  

 

II. THE DISCONTINUOUS GALERKIN METHOD 

In this section, the discontinuous Galerkin finite element 

method is developed and implemented for solving the 

Troesch’s problem defined by    

'' sinh( )u u                                    (3) 

subject to  

 

(0) 0,      (1) 1u u                                   (4) 

where λ is a positive constant. 

In order to implement the discontinuous Galerkin (DG) 

method, we first create a partition, ,kx k x   k=0, 1, 2, …, 

N+1, 
1

1
x

N
 


 with  and define the piecewise 

polynomial spaces  

 
, { : | }

k

n p
I pS U U P                            (5) 

where pP  denotes the space of Legendre polynomials of 

degree p which will be adopted as basis functions. 

We define the weak discontinuous Galerkin (DG) 

formulation for (3) by multiplying it by a test function, and 

then integrating over I
k
. After integrating by parts, we obtain  

1 1
1 1' | ' | '' sinh( ) 0

k k
k k

k k
k k

x xx x

x x x x
u v uv uv dx u dx 

 
            (6) 

A New Discontinuous Galerkin Method to Solve Highly 

Sensitive Troesch’s Problem 

Helmi Temimi 

International Journal of Applied Physics and Mathematics, Vol. 3, No. 2, March 2013

103DOI: 10.7763/IJAPM.2013.V3.185



  

Let us replace u by  ( ) |
kk I pU x U P   and v by pV P  in 

(6), we obtain for k=0, 1, 2, ⋯, N and pV P    

 

1 1 1 1

' ' '( ) ( ) ( ) ( ) ( ) ( )
k k k k k kk k kU x V x U x V x U x V x
   

    
  

 

1 1'( ) ( ) '' sinh( ) 0
k k

k k

k k

x x

k k k
x x

U x V x U V dx U dx 
     


   (7) 

 

where ( )
kkU x


,

1
( )

kkU x



, ' ( )

kkU x


 and
1

' ( )
kkU x



are called 

numerical fluxes. These terms arise from a double integration 

by parts and an appropriate choice of these fluxes will define 

a stable DG method. Therefore, let us choose for k=1, 2, ⋯, 

N−1  

 

1 1 1( ) ( ),      ( ) ( )
k k k kk k k kU x U x U x U x
 

 
 

 
 

1 1

' ' ' '
1( ) ( ),      ( ) ( )

k k k kk k k kU x U x U x U x
 

 
 

 
 

 

for k=0 

 

1 1 00 0 0( ) ( ),      ( ) 0U x U x U x 
 

 

 

and 

 

1 1 0

' ' ' '
0 1 0 0 0( ) ( ),      ( ) ( )U x U x U x U x  

 
 

 

for k=N 

 

1(1) 1,      ( ) ( )
NN N N NU U x U x 

 
 

' ' ' '(1) (1 ),      ( ) ( )N N N N N NU U U x U x  
 

 

 

Therefore, the discrete formulation consists of 

determining ( ) |
kk I pU x U P  , such that pV P      

 

1 1 1

' ' '
1 1 0 0( ) ( ) (0 ) (0 ) ( ) ( )U x V x U V U x V x         

1 1

0 0
0 0

'' sinh( ) 0
x x

U V dx U dx                (8) 

 

for k=1, 2, ⋯, N−1  

 

1 1

' '
1( ) ( ) ( ) ( )

k k k kk kU x V x U x V x
 

   
    

1 1

' '
1( ) ( ) ( ) ( )

k k k kk kU x V x U x V x
 

   
   

1 1
'' sinh( ) 0

k k

k k

x x

k k
x x

U V dx U dx 
 

               (9) 

 

and  

 
' ' '

1(1 ) (1 ) ( ) ( ) ( ) ( )N N N N N N NU V U x V x U x V x     
    

1 1

'' sinh( ) '(1 )
NN

N N
x x

U V dx U dx V                 (10) 

 

We note that the DG solutions on each element I
k
 can be 

written for k=0, 1, ⋯, N as  

 

, ,

0 0

( ) ( ) ( )

p p

k i k i i k i

i i

U x c x c  
 

  


               (11) 

' ' '
, ,

0 0

2
( ) ( ) ( )

p p

k i k i i k i

i i

U x c x c
x

  
 

 


 


               (12) 

 

where ( )i x  are Legendre polynomial of degree i on the 

interval I
k
 and ( )i 


are the mapped Legendre polynomial of 

degree i to the standard interval [−1,1]. Then, we choose the 

test function V to be j


 and substitute (11) and (12) in 

(8)-(10) to obtain for j=0,1 , 2, ⋯, p    

 

' '
,1 ,0

0 0

2 2
( 1) (1) ( 1) ( 1)

p p

i j i i j i

i i

c c
x x
   

 

    
 

 
   

 

2
1

' ''
,0 ,0

1
0 0

2 2
(1) (1) ( ) ( )

p p

i j i i j i

i i

c d c
x x
      


 

  
    

    
  
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1

,0
1

0

sinh ( ) ( ) 0
2

p

i i j

i

x
c d      




 
  
 
 


 
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for k=1, 2, ⋯, N−1  
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for k=N 
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III. NUMERICAL EXPERIMENT 

 

We solve (3) using a uniform mesh with Δx=0.01 and p=2λ 
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Let us now implement the DG method to solve Troesch’s 

problem for different values of the parameter λ. The 

challenge throughout the years for this nonlinear parametric 

problem consists of finding the solution for large values of λ. 

Therefore, in this study, we provide the DG solution of the 

Troesch’s problem for λ=1,3,5,10,15,20 and we show the 

efficiency of the method compared to existing numerical and 

semi-analytical results [5], [9], [12].



  

 

 

 

 

 

 
 

 

  

 

 

 

 
     

 

 

 

 

 

 

 

 

 

 

 

 

   

    

 

  

different values of λ. This DG computational scheme was 

successful to provide a reliable solution and to avoid the 

difficulty of the problem caused by large values of λ. This 

success was illustrated through the computational results 

shown earlier which reveal an outstanding agreement with 

the benchmark solutions. Therefore, due to its computational 

simplicity and efficiency, the DG method for solving 

Troesch’s problem with a wide range of λ could be 

considered for future work as a reference trustworthy solver.  
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for sake of accuracy mainly for large values of λ where an 

approximation by polynomials of higher degree is required. 

We plot the discontinuous Galerkin solution U versus x in Fig.

1 for different values of the parameter λ. 
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Fig. 1. The DG solution of the troesch’s problem for various λ.

Table I exhibits the pointwise DG solution at different 

values of x and is compared to the benchmark solution 

provided in [9] for λ=10 along with the error terms. These 

computational results reveal the accuracy and the efficiency 

of the DG method and unveiled to be a reliable solver for this 

kind of parametric nonlinear problem. 

Moreover, in Table II, we presented an accurate pointwise 

DG solution for large values of λ which could be taken as a 

reference solution for future studies. 

TABLE I: THE DG SOLUTION OF THE TROESCH’S PROBLEM FOR λ=10

x U(x)[9] U
DG

(x) U(x)[9]−U
DG

(x)

0 0 0 0

0.1 0.0000421118367 0.0000421118992 -0.0062500000000(-08)

0.2 0.0001299639238 0.0001299641158 -0.0192000000018(-08)

0.3 0.0003589778855 0.0003589784013 -0.0515799999988(-08)

0.4 0.0009779014227 0.0009779027718 -0.1349100000117(-08)

0.5 0.0026590171780 0.0026590204903 -0.3312300000252(-08)

0.6 0.0072289246952 0.0072289312128 -0.6517599999630(-08)

0.7 0.0196640602566 0.0196640630970 -0.2840400002007(-08)

0.8 0.0537303295856 0.0537303293505 0.0235100001966(-08)

0.9 0.1521140787863 0.1521140764047 0.2381600000544(-08)

1 1 1.0000000090671 -0.9067099959736(-08)

TABLE II: THE DG SOLUTION OF THE TROESCH’S PROBLEM FOR λ=15,20,25

x U
DG

(x),λ=15 U
DG

(x),λ=20 U
DG

(x),λ=25

0 0 0 0

0.1 0.000000347003229 0.000000002989864 0.000000000026818

0.2 0.000001632587467 0.000000022496907 0.000000000328906

0.3 0.000007334025683 0.000000166285667 0.000000004007079

0.4 0.000032872677760 0.000001228701537 0.000000048816234

0.5 0.000147325995007 0.000009078945592 0.000000594703476

0.6 0.000660270775636 0.000067084840902 0.000007244971505

0.7 0.002959243782406 0.000495694649225 0.000088261830496

0.8 0.013272815796087 0.003663117627065 0.001075265295340

0.9 0.060450171661991 0.027230987802378 0.013128600791286

1 1.000128195252954 1.000893657815884 1.007705271805717

{TC “2 The DG solution of the Troesch’s problem for =15,20,25.” \ft}

IV. CONCLUSION

An efficient and accurate discontinuous Galerkin method 

has been developed to solve the Troesch’s problem for 
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