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Abstract—In this paper, A new scheme, deduced from the 

Modified Laplace decomposition method (MLDM), is presented 

to obtain exact solutions for the singular initial value problems 

(IVPs) of lane-Emden type. Both linear and nonlinear cases are 

considered. If the exact solution exists in the zeroth component, 

the proposed method yields exact solution in two iterations. The 

results show that MLDM is very effective and easy to 

implement. 

 

Index Terms—Modified laplace decomposition method, 

singular, initial value problem, lane-emden type equation.  

 

I. INTRODUCTION 

Lane-Emden type initial value problems (IVPs) have 

found a wide range of applications in modeling a class of 

problems in the field of mathematical physics and 

astrophysics [1], [2], which can be written in the form: 

 

 
2

0, 0 1y y f y x
x

                          (1) 

 

subject to conditions 

 

   0 , 0y A y B                               (2) 

 

where A and B are constants.  f y  is a real-valued 

continuous function. This equation is very useful in the study 

of various models such as the theory of stellar structure, the 

thermal behavior of a spherical cloud of gas, isothermal gas 

spheres and the theory of thermionic currents [1]-[3]. 

On the other hand, attentions have been paid to another 

class of singular initial value problems of Lane-Emden type 

with the form: 

 

   
2

, , 0 1y y f x y g x x
x

                       (3) 

 

The solution of the Lane-Emden problem is numerically 

challenging because of the singularity behavior at the origin.  

The approximate solutions of the Lane-Emden equation were 

given by Adomian decomposition method [4]-[6], homotopy 

perturbation method [7]-[9], variational iteration method  

 

 

 

[10]-[12], differential transformation method [13], 

Wavelets-Collocation method [14], [15] and so on. 

Laplace Adomian decomposition method (LADM) was 

first proposed by Suheil A. Khuri [16], [17] and has been 

successfully used to find the solution of differential equations 

[18]-[23]. The major advantage of this method is its 

capability of combining the two powerful methods to obtain 

exact solutions for nonlinear equations. However, LADM 

will generate “noise term” [24] for inhomogeneous equations. 

Therefore, M. Hussain [25] developed a modified Laplace 

decomposition method (MLDM) which can accelerate the 

rapid convergence of series solution when compared with 

Laplace Adomian decomposition method. In this paper, we 

will apply the MLDM to obtain exact or approximate 

analytical solutions of the Lane-Emden type equations. 

 

II. MODIFIED LAPLACE DECOMPOSITION METHOD 

In this section, we will briefly discuss the use of the 

MLDM for the solution of Lane-Emden equation given in 

(3).  

Multiplying x and then taking the Laplace transform on 

both sides of (3) gives: 

 

        2 0 , 0s L y y L xf x y xg x     ,          (4) 

 

where L is the operator of Laplace transform 

and  
 dL y

L y
ds

  . 

We decompose  ,f x y into two parts: 

 

     ,f x y R y x N y x        ,                  (5) 

where  R y x   and  N y x   denote the linear term and the 

nonlinear term respectively. 

The Adomian decomposition method and the Adomian 

polynomials can be used to handle Eq. (4) and to address the 

nonlinear term  N y x   . MLDM defines a solution  y x by 

an infinite series of components given by: 

 

   
0

,n

n

y x y x




                                (6) 

and the nonlinear term can be represented by an infinite series 

of the Adomian polynomials nA in the form: 

    
0

n

n

N y x A x




 ,                             (7) 
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where nA are the Adomian polynomials and it can be 

calculated by formula given below: 
 

0 0

1
, 0,1,2,

!

n
n

n nn
n

d
A N u n

n d







 

  
   

  
  .       (8) 

 
Therefore Adomian’s polynomials are given by: 

 

 
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   
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2
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1
,

3!
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A u N u
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A u N u u u N u u N u





  

    



          (9) 

After substituting (6) and (7) into (4), we have  
 

      

   

2

0

0 0

0

0

n

n

n n

n n

s L y x y L xg x

L xR y x x A x





 

 

 
    
  


          



 

.         (10) 

 
Using the linearity of Laplace transform, it follows that 

 

       

    

2

0

0

0

0,

n

n

n n

n

s L y x y L xg x

L xR y x xA x










   




    




         (11) 

 
In general, the recursive relation is given by: 

 

       

       

2 2

0

2

1

0 ,

,n n n

L y x s y s L xg x

L y x s L xR y x xA x

 





   

    

        (12) 

 
By integrating both sides of Eq. (12) from 0 to s respect 

with s, we have 
 

       

       

2 2

0

2

1

0 ,

,n n n

L y x s y s L xg x ds

L y x s L xR y x xA x ds

 





    

   




     (13) 

 
Taking the inverse Laplace transform to Eq. (13), one 

obtains 
 

         

       

1 2 2

0

1 2

1

0 ,

,n n n

y x L s y s L xg x ds H x

y x L s L xR y x xA x ds

  

 



     

   




 (14) 

 

where  H x represents the term arising from source term and 

prescribed initial condition. The initial solution is important, 

and the choice of Eq. (14) as the initial solution always leads 

to noise oscillation during the iteration procedure. 

In order overcome the shortcoming, we assume 

that  H x can be divided into the sum of two parts 

namely  0H x and  1H x , therefore we get 

     0 1H x H x H x  .                        (15) 

 
Instead of the iteration procedure Eq. (14), we suggest the 

following modification 
 

   

         
       

0 0

1 2

1 1

1 2

1

,

,

,

n n

n n n

y x H x

y x H x L s L xR y x xA x ds

y x L s L xR y x xA x ds

 

 





    

   





(16) 

 
The solution through the modified Laplace decomposition 

method highly depends upon the choice of  0H x and  1H x . 

 

III. ILLUSTRATIVE EXAMPLES 

In this section, we will apply the method presented in this 

paper to solve singular IVPs of Lane-Emden-type. 

A. Linear Cases 

Example 1. Consider the following linear, homogeneous 

Lane-Emden differential equation (5, 9, 11, 26, 27, 29) 
 

    22
2 2 3 0,y y t y

t
                       (17) 

 
with initial conditions 
 

   0 1, 0 0.y y                       (18) 

 
According to the MLDM and initial conditions, we get 

 

    2 31 2 2 3 ,s L y L t t y                     (19) 

 

and then, the recursive relations can be obtained as  
 

    

       

1 2

0

1 2 3

1

0 ,

2 2 3 ,n n

y t L s y ds

y t L s L t t y t ds

 

 



   

  




       (20) 

 
Considering equation (20), starting with substituting the 

value of  0 1y  given in (18) into (20), we have 

 

0

2 4

1

4 6 8

2

6 8 10 12

3

1,

1
,

5

3 13 1

10 105 90

3 17 59 1
,

70 630 11550 3510

y

y t t

y t t t

y t t t t



 

  

   



     (21) 

Hence, the solution series in general gives 

 

2 4 6

1 2 3

1 1
1 ,

2 6
y y y y t t t              (22) 

 

The closed form of the series (22) is    2expy t t which 

gives an exact solution of the problem. 
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It should be noted that the MLDM gives an analytical 

solution in the closed form like the Adomian decomposition 

method [5], homotopy perturbation method [9] and 

variational iteration method [11]. 

Example 2. Consider the linear, non-homogenous 

Lane-Emden differential equation (14) 

 

2
0, 0, 0,1ny y y t n

t
                     (23) 

 

subject to initial conditions 

 

   0 1, 0 0.y y                             (24) 

 

According to the MLDM and initial conditions (24), we 

have 

 

     2 0 0.ns L y y L ty                       (25) 

 

when 0n  , we obtain 

 

     2 0 0,s L y y L t                          (26) 

 

We east get 

 

     
2

2 4 3

1 1 1 1
= + , = , =1 ,

63

t
L y L y y t

ss s s
      (27) 

 

which the exact solution. 

When 1n  , we obtain 

 

   2 1 0,s L y L ty                         (28) 

 

the recursive relation is obtained as 

 

    
     

1 2

0

1 2

1

0 ,

,n n

y t L s y ds

y t L s L ty t ds

 

 



   

 




             (29) 

By using Eq. (29), we can get 

 
2 4 6

0 1 2 31, , , ,
3 2! 5 4! 7 6!

t t t
y y y y     

  
  (30) 

Hence, the solution series in general gives 

 
2 2 6

1 ,
3 2! 5 4! 7 6!

t t t
y     

  
              (31) 

The closed form of the series (31) is  =siny t t t which 

gives an exact solution of the problem. 

Example 3. Consider the linear, non-homogenous 

Lane-Emden equation (5, 11, 26, 27): 

   
2 32

6 12 , 0 2y y y t t t t
t

                    (32) 

subject to initial conditions 

   0 0, 0 0.y y                           (33) 

 

According to the MLDM and initial conditions (33), we 

have 

 

     2 2 3 46 12 0s L y L ty L t t t t       ,     (34) 

 

the recursive relation is obtained as 

 

    

       
    

1 2 2

0

1 2 3 4

1 0

1 2

1

6 12 ,

,

,n n

y t L s L t t ds

y t L s L ty L t t ds

y t L s L ty ds

 

 

 


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  









         (35) 

 

And then we have 

 

 2 3

0 1, 0, 0,ny t t y y                      (36) 

 

so the exact solution is obtained as 2 3y t t  . 

Unlike the variational iteration method [11] which 

introduces noise terms, our method can get the exact solution 

while only need a few iterations. 

B. Nonlinear Cases 

Example 4. Consider the following nonlinear, 

homogeneous Lane-Emden differential equation 

 

 3 62
6 0, 0y y y t t

t
                        (37) 

 

subject to initial conditions 

 

   0 0, 0 0.y y                            (38) 

 

According to the MLDM and initial conditions (38), we 

have 

 

     2 3 76 0,s L y L ty L t t                   (39) 

the recursive relation is obtained as 

 

   

     

   

2

0

2 3 7

1 1

2 3

1

6 ,

,

,

n

n n

L y s L t

L y s L ty L t

L y s L ty











  
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 

                 (40) 

 

so we have 
 

 

 

 

2

0 03

1 1

2
, ,

0, 0,

0, 0, 1n n

L y y t
s

L y y

L y y n

 

 

  

                   (41) 

so the exact solution is obtained as 2y t . 

Example 5. Consider the following nonlinear, 
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homogeneous Lane-Emden differential equation (9, 11, 

[27]-[29]: 
 

    22
4 2 0, 0 1,y yy y e e t

t
                    (42) 

 
subject to initial conditions 

 

   0 0, 0 0.y y                              (43) 

 

The exact solution is    22ln 1y t t   . 

Applying the MLDM and initial conditions (43), we have 
 

    2 24 2 0,y ys L y L t e e                     (44) 

 
and then, we get the recursive relation as 

 

     2

0 10, 4 ,n nL y L y s L tA


                  (45) 

 

where the nonlinear operator   22 y yN y e e  is 

decomposed as in (9) in terms of the Adomian polynomials. 

From (10) the first few Adomian polynomials 

for   22 y yN y e e  are computed as follows: 
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 
  

 

   
      

   

   
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   

 
  

 



      (46) 

And then by using (45), we have 
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   
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0 0 0

2

1 1 14 3

4

2 2 26 5

6

3 3 38 7

8

4 4 310 9

0, 0, 0,

12 1! 12 1!
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3

20 3! 20 3!
, , ,

5

28 5! 28 5! 2
, , ,

37

36 7! 36 7! 1
, , ,

29

L y L y y

L y L y y t
s s

L y L y y t
s s

L y L y y t
s s

L y L y y t
s s

   

 
     

 
     

 
     

 
    

    (47) 

 

Then the solution in a series form is given by 

 

  2 4 6 81 1 1
2 .

2 3 4
y t t t t t

 
      

 
           (48) 

 

Hence the exact solution has the form 

 

   22ln 1 .y t t                              (49) 

Example 6. Consider the nonlinear, homogeneous 

Lane-Emden differential equation (9, 11, 27) 

 

   
2

6 4 ln , 0 1,y y y y y t
t

                        (50) 

 

subject to initial conditions 

 

   0 1, 0 0.y y                              (51) 

 

The exact solution is  
2ty t e . 

Applying the MLDM and initial conditions (51), we have 

 

   2 1 6 4 ln ,s L y L yt yt y                      (52) 

 

and then, we get the recursive relation as 

 

     2 2

0 1 1, 6 4 ln ,n n nL y s L y s L y t y t y 

 
       (53) 

 

where the nonlinear operator   lnN y y y is decomposed as 

in (9) in terms of the Adomian polynomials. From (10) the 

first few Adomian polynomials for   lnN y y y are 

computed as follows: 
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 

 

0 0 0

1 1 0

2

1
2 2 0

0
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1 2 1
3 3 0 2
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

 
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

              (54) 

According to Eq. (53) and by using the Eq. (54), we can 

get the series solution as 
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      (55) 

 

which is the expansion of the function    2expy t t and is 

the exact solution of example 6. 

The series solutions obtained by the MLDM are the same 

as Adomian decomposition method [28], variational iteration 

method [11] and homotopy perturbation method [9]. Unlike 

other approximation methods [14], [15], [27], [28], our 

method can get the exact solution. 
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IV. CONCLUSION 

In this paper, we have successfully employed the Modified 

Laplace decomposition method (MLDM) to obtain exact 

solutions for singular IVPs of Lane-Emden-type. MLDM can 

accelerate the rapid convergence of series solution when 

compared with Laplace decomposition method. It is shown 

that the MLDM is a promising tool for singular IVP’s of 

Lane-Emden type, and in some cases, yields exact solutions 

in two iterations. 
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