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Abstract—The Hall resistivity is explained to arise from the 

spin and angular momemtum which leads to fractional charge 

in a natural way. There are helical orbits for the electrons in a 

magnetic field so that the + sign in spin gives one helicity while 

the – sign gives another, which is also related to the sign of the 

electron velocity. The fractions which arise in the graphite 

resistivity are explained in terms of principal fractions, 

resonances, sum processes and clusters. The graphene Hall 

effect data is explained by using the Landau levels with special 

treatment of spin. The two layer graphene  is well explained. A 

small number of fractions are explained in terms of 

sample-dependent clusters which are found in some of the 

samples. While most of the fractions are a property of pure 

samples, some of the fractions are induced by the clusters. 

 

Index Terms—Graphene, graphite, helicity, quantum hall 

effect, special spin.  

 

I. INTRODUCTION 

Recently, we have described the correct theory of the 

quantum Hall effect as well as explained the origin of 101 

fractions found in the experimental data [1]. The cyclotron 

frequency which appears in the Landau levels is replaced by 

double valued helical values. The Lande’s formula is 

corrected to include the time-reversed conjugate states. Only 

the l =0 states are used in the original Landau theory which 

requires to be modified for finite l value. Since j=l ±s is the 

total angular momentum keeping only l = 0 leaves out the 

important effects at high fields. The energy levels which 

result by these corrections lead to the fractions in the 

flux-quantized resistivity measured in the Hall effect. The 

concept of helicity is introduced to understand the right and 

left moving electrons. Usually the velocity is single valued 

except that in complex clusters there are rotations which 

allow two signs of the velocity. Hence, as long as charge is 

conserved particles can occur with reversed helicity. In a 

single particle this will not happen but in a cluster it is 

possible.  

In this paper, we describe the concept of helicity as applied 

to the quantum Hall effect of electrons in a high magnetic 

field and low temperatures and also explain the experimental 

data of fractions in the Hall effect of  graphite and graphene. 

We look for the evidence of the mixed helicity as well as 

“reversed helicity”. We analyze the experimental data of the 

quantum Hall effect measurements of noise power to look for 

the effect of helicity. We find that noise power depends on 

the helicity. It is possible to heat the samples by a heater wire 

and monitor the motion of the particles. Hence we explain 

that while one particle moves to the right, the conjugate will 
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move to the left. This motion of the particles is controlled by 

the helicity. Hence all particles occur in pairs. The original 

observation of the quantum Hall effect by von Klitzing et al 

[2] and Tsui et al. [3] had no theory and the efforts of 

Laughlin [4] did not yield an interpretation of the data and 

comparisons with the one-component plasma did not find the 

ground state. It was thought that the Coulomb correlations 

may lead to a fractional charge of the electron but this theory 

[5] does not depend on spin. The experimental data is 

consistent with the fractional charge. 

 

II. HELICITY 

A. Spin and Helicity 

The helicity of a particle is defined as the sign of .p/|p| 

where  is the spin without the factor of ½ and p is the linear 

momentum. The photon is a boson with two polarizations, 

one along the direction of motion and the other opposite to it. 

When light is incident on a tilted plane, there is an electric 

field perpendicular to that plane and when the helicity is 

changed the direction of the electric field reverses. The 

helicity of the photon for circular polarization is defined as 

sin2 so that it becomes a continuous variable with zero 

value at a few points. The photocurrent normal to the plane is 

proportional to the helicity [6]. In the case of particles, there 

are only two values of the helicity, + and -. This means that 

the helicity of the photon reverses but in the case of particles, 

the “reversed helicity” is not found except in the case of 

Majorana particles. In the quantum Hall effect the resistivity 

shows plateaux at a fraction of h/e2 so that the fractional 

charge of a particle can be measured. 

B. Spin and Helicity in Resistivity 

In single particles,  the helicity  is defined as the projection 

of its spin along the direction of motion. It is impossible to 

change the helicity of a particle because it would then 

become its antiparticle. In the solid state it is possible to 

consider a cluster of particles which permits the observation 

of a phenomenon not found in single particles. The wave 

function of a particle may be made of a linear combination of 

two particles which differ in helicity. The helicity of one 

particle may be positive while that of the other may be 

negative and we can make a third particle which will be a 

combination of the first and the second particle. A particle of 

mixed helicity means that it is made of particles of different 

helicities. It does not mean that a particle of positive helicity 

can change itself into that of negative helicity. This  means 

that “reversed helicity” does not occur. Under the rotation it 

is possible to change the direction of the velocity and hence 

the helicity of a particle in a molecule or in a solid but the 

charge has to be conserved. In the quantum Hall effect the 
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resistivity is quantized at the plateaux. The usual Hall effect 

occurs with the resistivity linearly proportional to the 

magnetic field, 
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where B is the magnetic induction, e is the electron charge, c 

is the velocity of light and n is the electron concentration, the 

number of electrons per unit area for the slab of a metal. The 

flux quantization leads to plateaux at which,  
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where h is the Planck’s constant and i is an integer. When 

angular momentum is considered, i becomes a fraction. Due 

to particle-antiparticle symmetry the fractions occur in pairs, 

one for the positive spin and the other for the negative spin. 

For single particles, the resistivity at the plateau is given by, 
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where g=(2j+1)/(2l+1) and j = l ±s. The ± sign in the 

expression for j introduces the particle-antiparticle symmetry. 

Since the signs occur in the spin, the values of the resistivity 

corresponds to two helicities. The values of (1/2)g± for the 

two helicities give two different plateaux in the resistivity. 

The spin as well as the helicities thus enter in the problem of 

Hall resistivity. The fractions which occur for a single value 

of the l and s are called “principal fractions”. The 

two-particle states occur for 1+2 where =(1/2)g± and the 

effective charge of a particle becomes e*=(1/2)ge. Similarly, 

the resonances occur at 1-2. In AlxGa1-xAs/GaAs  

heterostructures, clusters of electrons are often formed in 

which case the spin is different from ½. The large values of 

spin are required to understand the plateaux which depend on 

the sample and show spin wave reduction in the value of the 

spin. The spin larger than ½ occurs in clusters which are 

subject to rotations. Hence “roton” type effects are seen in the 

quantum Hall effect of clusters of electrons. 

C. Two-Particle States 

The single-particle states with spin ½ occur at, 
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The positive sign corresponds to + helicity (right handed) 

and the negative sign corresponds to – helicity (left handed). 

For l =0 the above expression reduces to (1/2)±s so that the 

effective charge for s=1/2 becomes 1 and corresponds to + 

helicity and the negative sign gives zero charge and 

corresponds to – helicity. For l =1, the denominator is 2l+1=3 

and the numerator gives (3/2)±s which is 2 for + and 1 for the 

negative sign. Hence 1/3 belongs to negative helicity and 2/3 

to positive helicity. These are single particle states which can 

not rotate. There is no doubt that all of the predicted series of 

fractions l/(2l+1) as well as (l+1)/(2l+1) are the same as in the 

experimental data. The two-particle state of charge 1/3 

occurs at (1/3)+(1/3)=2/3 with negative helicity. The one 

particle state at 2/3 has positive helicity. Hence the 

two-particle state at 2/3 is degenerate with the one particle  

state at 2/3 so that  2/3 has mixed helicity. The two particle 

state of 2/3 occurs at 4/3 which will be of mixed helicity. 

Similarly, 5/3 made from (1/3)+(4/3) =5/3  belongs to mixed 

helicity. By rotation the direction of velocity changes, and the 

sign of s changes so that 

(2/3)+(2/3)+(1/3)=(2/3)+(1/3)+(2/3)=5/3 is an example of 

reversed helicity with conserved charge. We have started 

with the odd number of particles and reversed the helicities of 

only two values. It is possible to start with even number of 

values in which we reverse the helicities of even number of 

charges so that we reverse the helicities without loosing the 

charge conservation. The state 7/3 is made of 

(2/3)+(2/3)+(1/3)+(2/3)=7/3. This is a cluster of four 

electrons. Upon rotation 1/3 changes into 2/3 and 2/3 changes 

into 1/3 so that 7/3 is an example of mixed helicities as well 

as reversed helicities. Similarly 8/3= 1/3+7/3 is an example 

of mixed as well as “reversed helicities”. 

D. Noise Power and Helicity 

In the band theory of solids, the sum of the electron charge 

and the hole charge is zero. However, when a hole is created, 

an electron must be removed from the same position. Hence, 

the annihilated eigen value is f when created eigen value is 

(1-f). The sum of the two values is 1. If charge is conserved, 

the fractional charge 1/3 requires that a charge of 2/3 should 

also arise. In the flux quantization the charge is e because 

flux is quantized as n’hc/e. Hence the charge is not e but it is 

e/n’. Hence the charge can become e/2 and not necessarily e. 

The sum of the charges 1/3+2/3=1 can also become 

(½)[1/3+2/3]=1/2. In the periodic potential the 1/3 is replaced 

by ±1/3 and 2/3 is replaced by ±2/3 and so on and so forth. 

For electronic states of fractional charges such as 2/3, 3/5, 8/3, 

5/2 etc., there are hole states of opposite charge. The noise 

power at a point is of the form, 
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where f(1-f) is a fermion factor which arises from the creation 

of an electron at one site accompanied with the destruction of 

an electron at another site and gQ is the conductance of the 

material at the quantum point contact. The thermal excess 

noise power is of the form,
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where 
F is the  change in the Fermi energy, t(1-t) is

the transmission probability and T is the temperature. The 

conductance at a point at 1/3 is for example,
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For l =0, s=+1/2,(1/2)g-=(1/2)-s=0 which is electrically 

neutral or a neutral particle. Two particles of charge 1/3 each 

and one hole of charge -2/3 create a zero charge. Similarly, 

two holes of charge -1/3 each and one particle of charge 2/3 

can produce charge neutrality. In the experimental data [7] of 

AlGaAs/GaAs also there is a zero energy state with g=0. The 

excess noise power has the factor gQ=(1/3)e2/h accompanied 

with the factor (2/3)e2/h which differ in helicity. Hence the 

noise power changes upon change in helicity. Some times the 

experimentalists [8] use the idea of chirality which is similar 

to that of helicity defined in the present work as the sign of 

p.s. The velocity of the electron appears in the helicity so that 

upstream particles have one helicity while the down stream 

have another helicity. Hence 1/3 and 2/3 travel in opposite 

directions. It is possible to put a heater wire in the sample to 

see the direction of motion of the fractionally charged 

particles [9]-[10]. 

 

III. GRAPHITE DATA 

According to our theory, there are quasiparticles of 

fractional as well as integer charges and the spin and charge 

are coupled. Hence, a modified Bohr magneton emerges and 

resistivity depends on the spin. There are fundamental 

charges given by e*/e = (1/2)g. where g=(2j+1)/(2l+1) so that 

the resistivity becomes =h/[(1/2)ge2]. In heterostructures, 

the spin need not be 1/2 because there is cluster formation. 

For example, the spin of a cluster may be 3/2 or 5/2, etc.  

There are two particle states so that 1+2 is possible. 

Similarly, there are resonances so that 1-2 is also allowed.  
Hence, quasiparticle charge is determined from (i) 

spin-charge coupling, (ii) two-particle states, (iii) resonances 

and (iv) electron clustering. We explain the fractional 

charges found in graphite. The experimental measurements 

have been performed by Kopelevich et al. [11] so that we 

obtain the fractions from their work which are, 2/7, 1/4, 2/9, 

1/5, 2/11, 1/6, 2/15, 1/8, 2/17 and 1/9. The energy of a state is 

given by (1/2)g(n+1/2) so that we consider two oscillators 

with energies, E1= (1/2)g1(n1+1/2) and E2= (1/2)g2(n2+1/2). 

The energy difference between these states is (1/2)g(n1-n2). 

For l=3, 2l+1=7 and for positive sign in 

(1/2)g=[l+(1/2)s]/(2l+1)=4/7, (1/2)g1n1-(1/2)g2n2 

+(1/2)g1(1/2)-(1/2)g2(1/2)= (1/2)(1/2)g1 for n1=n2=0, 

(1/2)g2=0 for the second oscillator which has l=0, -ve sign 

and s=1/2 so that (1/2)g2=0. Hence, (1/2)(1/2)g1=2/7. The 

ingredients we put are two oscillators with different values of 

l and s which are the orbital and spin angular momenta 

quantum numbers. The effective charge which depends on 

spin also determines the resistivity. Hence the resistivity 

depends on spin. In the electron clusters, spin can become 

zero, so that we put s=0 to obtain (1/2)g= 

[ l+(1/2)]/(2l+1)=1/2 or g=1. In the formula (1/2)[(1/2)g-0] 

for g=1 we obtain 1/4. For l=4, 2l+1 =9 and for s=1/2 for 

negative sign, we obtain (1/2)g=4/9. In the expression, 

(1/2)[(1/2)g1-(1/2)g2]  we have g2=0 and (1/2)g1=4/9 so that 

the effective charge becomes (1/2)(1/2)g1=2/9. For l =2, we 

have 2l+1=5 and l/2l+1=2/5 and (l+1)/(2l+1)=3/5. We 

calculate the resonance state at 

(1/2)g[n1+(1/2)]-(1/2)g[n2+(1/2)] at (1/2)g(n1-n2) which 

comes at 3/5 -2/5 =1/5. For l =5 we have l/2l+1 =5/11 and 

(l+1)/(2l+1)=6/11. The value of (1/2)(6/11-0)=3/11. The 

resonance state now occurs at 5/11-3/11 =2/11. Let us look at 

the flux quantization at n'hc/e so that for n'=2, the charge is 

e/2. Hence for n'=2, the effective value of 1/3 changes to 1/6. 

The original value for l =1, 2l+1=3 for negative sign is 1/3. 

For l=7, the two series, l/2l+1 =7/15 and (l+1)/(2l+1)=8/15, 

(1/2)(1/2)g=4/15 and for n'=2, 4/15 becomes 2/15. We have 

already obtained 1/4 which for n'=2 becomes 1/8. For l=8, 

2l+1=17 and the principal fractions are l/2l+1 =8/17 and 9/17. 

We have (1/2)(1/2)g =4/17 which for n'=2 gives 2/17. For l=4, 

l/(2l+1) =4/9 and (l+1)/(2l+1) =5/9. The resonance state of 

these two occurs at 5/9-4/9=1/9. This explains all of the 

fractions observed in the fractional quantum Hall effect of 

graphite. This confirms that our theory provides the correct 

interpretation of the quantum Hall effect data.  

 

IV. GRAPHENE 

The band structure of graphite was calculated by Wallace 

[12] by using “tight binding” approximation. In this 

calculation,  the valence and the conduction bands do cross at 

a point which can be visualized as a double cone. The upper 

cone is the conduction band and the lower cone is the valence 

band. The two cones may be of equal angle. If the cone 

angles are equal, then there are symmetries in the energy. 

However, if the two cone angles are not equal, the energies 

will not be symmetric. In the symmetric case, the energies of 

the quasiparticles in the two bands are equal in the magnitude 

and can be represent by ± E. Then there is analogy with the 

relativistic expression, ± (c2p2+m2c4)1/2. The energies of the 

quasiparticles can be mapped to the relativistic expression. 

Therefore, the band structure of graphene has been 

recalculated by Latil and Henrard [13] who find that the 

number of layers is an important parameter in the problem. If 

the valence and conduction cones are symmetric, it is 

possible to describe the quasiparticles by the Dirac equation 

in which the velocity of light is replaced by the Fermi 

velocity. The point at which the two cones meet is called the 

“Dirac point”, which has been considered by Partoens and 

Peeters [14]. In this way, the band structure has been 

obtained from the Schrödinger as well as from the Dirac 

theory. In the non-relativistic theory the symmetric energy 

levels can be obtained from the Kramers conjugate states 

such as ± ½ for the spin angular momentum. The bands can 

be distorted by the impurities [15]. Under these conditions, 

some energy levels have been drawn on the basis of 

relativistic theory and some on the basis of non-relativistic 

theory. Therefore, it is important to know the relativistic 

results as distinguished from the non-relativistic theory. 

We obtain the band structure of several layers of graphene 

and for a variety of stacking of layers by using 

non-relativistic density-functional theory [16]. We discuss 

the gap energies as a function of number of layers. We 

discuss the symmetries near the crossing points. Our 

calculations are based on non-relativistic Schrödinger 

equation, and hence relativistic effects have not been 

obtained. Some of the crossing points actually have a small 

gap so these should be called “Schrödinger points”. The 

velocity of light can not be replaced by the particle velocity. 
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Fig. 1. The band structure of a single layer of graphene. 

 

 
Fig. 2. The band structure of AA layers 

 

 

1) First of all we use the density functional theory to 

optimize the bond lengths and angles for which the energy of 

the Schrödinger equation is a minimum. For the 

configuration of the atoms for which the energy is minimized, 

we calculated the band structure at several points in the k 

space. For the points G (0, 0, 0), M (0, 0.5, 0), K (-0.333, 

0.667, 0) for a single layer of graphene, the band structure is 

shown in Fig. 1. 

2) At the point K, there is an apparent crossing. If we see 

this point carefully, it is not a crossing point and there is a gap 

of 27.212 meV. At the point M, starting from zero energy the 

positive root is not equal to the negative root and hence the 

energies are not symmetric with respect to the zero value. At 

the point G also, the positive and negative roots are not equal 

and hence the results are non-relativistic. 

3) When we put a second layer of graphene on top of the 

first layer such that the hexagons of the second layer are on 

the top of those of the first, which we call the AA type, we 

obtain the band structure. In this case a close observation 

shows that the positive roots are not equal to the negative 

roots. The F (0, 0.5, 0) point clearly shows four roots, two 

above zero and two below zero but the magnitudes of 

energies are not symmetric about the zero as seen in Fig. 2. 

4) In the three layers, the AAA type, the bands show 

unusual bending without crossing. The band from the top 

comes down and bends back. Similarly, the lower band 

comes up and bends back without crossing. A third band 

comes down and comes all the way down through the space 

created by the first two bands but there is no crossing. 
5) In the four layers, AAAA type, there is no crossing and 

the positive and the negative energies are not equal in 

magnitude. In the five layers of AAAAA tpe, the bands 

become degenerate but the positive and the negative roots are 

not equal. In six layers of AAAAAA type there is a large gap 

and the positive and negative roots are not equal in 

magnitude. In seven layers of the type AAAAAAA, the 
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problem, it is not immediately needed for the interpretation of 

the experimental data. Hence we have not done the 

linearization of crossing of bands.



  

bands become degenerate but not symmetric with respect to 

zero value.  In eight layers of all A type there is a degenerate 

point but not symmetry point. In nine layers also there is a 

degeneracy point but not symmetry point. In ten layers, there 

is a crossing point which has degenerate solutions also for 

some wave vectors but there is no symmetry about the zero 

energy. The results for eleven and twelve layers are also of 

this type. Hence, it can be said that there are many bands 

which may cross or become degenerate but not symmetric 

about zero energy. 

6) The centre of the hexagon of A layer does not have any 

atom. In the second layer we arrange the hexagons in such a 

way that an atom comes below the centre of the hexagon of 

the first layer. Therefore,  there is an atom in the B layer just 

below the centre of the hexagon of A layer. In this way, we 

can stack layers of the hexagons with alternate A and B type 

layers. The gap energy (number of layers) are 4.8 meV (2), 

0.33 eV (3), 2.99 meV (4), 13.6 meV (5), 2.99 meV (7), 5.71 

meV (9), 3.8 meV (11). The numbers 6, 8, 10 and 12 do not 

have a clear gap. The AB stack (number of layers=2) has a 

gap but the angle between the line of constant energy and that 

of the conduction band is not equal to that in the valence band 

at the points, G ( 0, 0, 0), F (0, 0.5, 0), K (-0.333, 0.667, 0) 

and G (0, 0, 0). In the case of twelve layers of alternate A and 

B type the crossing is shown in Fig. 3. The symmetry and the 

bending of one of the bands are clearly seen. As  the 

conduction band approaches the crossing point, there is a 

deflection in the energy as a function of wave vector. 

7) In the C type layer, one of the atoms is below the centre 

of the hexagon of A layer and the hexagon is. rotated till 

another atom of the C layer comes directly below one of the 

atoms of A layer. The stacks of the ABC type have been 

made. The points examined are Γ (0, 0, 0), K (0, 0.5, 0) and  

K’ (-0.333, 0.667, 0). The band gaps are as follows ABC 

0.626 eV, 0.299 eV; ABAC 24.49 meV, ABCA 0.61 meV; 

ABCAB 2.45 meV, ABCABC 0.38 eV, 0.626 eV, 0.299 eV; 

ABCABCA 1.224 meV, ABCABCAB 2.77meV, 

ABCABCABC 0.489 eV, 0.626 eV, 0.299 eV; 

ABCABCABCA 1.361 meV, ABCABCABCAB 2.313 meV, 

ABCABCABCABC 0.381 eV, 0.626 eV, 0.229eV. Thus in a 

variety of ABC type layers up to 12 layers there is no 

crossing. 

8) We have made 12 layers of A type, 12 layers of AB type 

and 12 layers of ABC type of graphene. The single layer has a 

small gap. Most of the stacks have a gap of the order of a few 

meV. There are some cases of AB stacks, particularly, even 

number of stacks with number of layers equal to 6, 8, 10, and 

12 which do have crossing. The positive energies at the 

crossing points are not equal to negative energies in 

magnitude which is a quality of supersymmetry. In 48 

different computations of band structure the 

“supersymmetry’ is not found. All our calculations are based 

on Schrödinger non-relativistic theory. Zhang et al [17] 

represent the atoms by dumb bell of band structure in which 

the energies are the geometric average of the Fermi energy 

and the cyclotron frequency. The positive root is equal to the 

negative root. In the non-relativistic band structure, a 

supersymmetric band structure with equal values of positive 

and negative energies, is not found. 

 

V. DIRAC POINT 

The band structure of electrons which has carbon atoms 

should be non-relativistic, i.e., it has p2/2m in the kinetic 

energy. The Dirac equation has linear p because of the 

symmetry of the space and time. Hence, in the band structure 

crossing points, the dispersion is parabolic in the linear 

momentum and not linear. Near the crossing point, the 

energies are symmetric for the electron and the positron. 

Above the crossing point there are electrons and below the 

crossing points positrons do not occur in graphene. 

Replacing the velocity of light by the electron velocity (Fermi 

velocity) is not possible because of the special properties of 

the velocity of light. Above the crossing points the particles 

are negatively charged and hence we may assume that below 

the crossing point the particles are positively charged. We are 

plotting the energy, not the charge, but the “crossing point” 

may be thought to be electrically neutral or a neutral point. 

The Dirac Hamiltonian has only positively charged particles 

accompanied with the negatively charged particles but 

neutral particles do not occur. It will take quite a lot of work 

to introduce the neutral points. For the time being, the Dirac 

points do not occur in graphene and the reference to these 

points in journals is very ambitious. The replacement of the 

velocity of light by the Fermi velocity is unlikely to yield 

realistic results. 

 

VI. GRAPHENE HALL EFFECT 

Usually the free electrons are in the l =0 state so that the 

electron gas models give a single value of the charge of the 

electron. In these experiments l =0 is the root cause of 

observing a single value for the electron charge. We consider 

(a) the finite value of l and more spin symmetries than are 

usually taken into account. We allow two levels for s=1/2 and 

two more levels for spin = -1/2 so that there are four levels for 

spin ½. These levels are not superimposed on each other 

because there are two separate g values, one for spin +1/2 and 

the other for spin -1/2, which describes the quantized current 

correctly for  = 1. The filling factor is,  = g
2

1
 which 

gives, one value for + sign and the other for – sign. We have 

thus introduced three different g values, the usual g value as 

well as g. For l =0, we obtain (1/2)g+=1 and (1/2)g-=0, for l = 

1, we get (1/2)g+=2/3 and (1/2)g-=1/3. The predicted values 

are the same as those measured. The effective charge is 

determined by the modification of the cyclotron frequency, 

ħc=gBB as, eeff=(1/2)ge=e.                                                                                                                                                                                                                                   

One of the series is  -=l/(2l+1) and the other is 

+=(l+1)/(2l+1). These series exactly predict  the observed 

series.  

The formula can be rearranged as, 
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For l=0, the above formula gives,  
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e*/e= s
2
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                                    (9) 

 

so that for s=1/2,  the effective charge becomes zero or one. 

Both these charges are important because they are both 

experimentally observed. We introduce the concept of 

negative spin so that the number of energy levels is not 

limited by 2S+1. It does not matter much if this expression is 

relaxed. The number of levels will then be infinite and not 

2S+1. Upto 2 × 2 matrix representation for the spin, the 

commutators are the same for the negative spin as for the 

positive spin. In fact, the levels resemble the harmonic 

oscillator. In the case of oscillations in a many-body system, 

we can remove the divergence in the energy by fixing the 

number of atoms but in the case of spins, the equally spaced 

levels can be made to continue upto .   

First of all, we write the infinite set of energy levels as 

follows. 

 

,...
2

5
,

2

3
,

2

1
,

2

1
,

2

3
,

2

5
HgHgHgHgHgHg BBBBBB    

(10) 

 

which are solutions of the Hamiltonian, H =gBHzSz. Here g 

is the splitting factor, B is the Bohr magneton, Hz the field 

along the z direction and Sz the z component of the spin. The 

above infinite series results for negative spin. For the positive 

spin, ½, the levels are at +(1/2)gBH and –(1/2)gBH. Next, 

we use both the positive as well as the negative sign in the 

total angular momentum so that j=l   s. In this case, we take 

the ratio, 

 

. g= 
12

12





l

j
                                 (11) 

 

Keeping both the signs in S, the above can be written as, 

 

g =
12

1)(2





l

sl
                           (12) 

For positive sign, 

 

 
12

2

1

2

1






l

sl

g                         (13) 

 

and for negative sign, 
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l

sl
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which are same as in (8). In the case of l =0, an interesting 

situation arises. The effective charge becomes related to spin, 

e*/e= sg 
2

1

2

1
      (Spin-charge locking)        (15) 

 

and 

 

e*/e= sg 
2

1

2

1
    (Spin-charge locking)      (16) 

 

Since, the Bohr magneton, B=e /2mc multiplies the g 

values, the effective charge of the electron can be written as 

e* = (1/2)g e. For positive s=1/2, the equation (15) gives 

g+=2 and for negative sign we get g-=0. The g+=2 is the usual 

expected value but we also find, g-=0, which gives zero 

energy. We substitute g=g+=2 (for s=1/2) in the expression 

(10) to obtain the following energies,  

 

E= 5BH, 3 BH, BH  , -  BH, -3BH  , -5BH  , …, etc.  

(17) 

 

and from eq.(16) we get, g=g-=0(s=1/2) which substituted in 

(10) gives, 

 

 E=0.                                    (18)      

 

This zero is very important because it is associated with 

zero charge. We can eliminate BH from the above by using, 

 

g
mc

e

2


H= cc

g
  

2
                (19) 

 

for g=2. For s=1, from (15) g+=3, so we substitute this value 

in (10) to obtain, 
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15
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9
BH, 
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3
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2

3
BH, -

2

9
BH, 

-
2

15
BH ,…, etc.                                                                              (20) 

 

For S=1, with negative sign in front of spin, eq.(16) gives 

g-=-1. We substitute g = g-= -1 in (10) to obtain, 

 

-
2

5
BH, -

2

3
BH,-

2

1
 BH, +

2

1
BH, +

2

3
BH, +

2

5
BH, ..., 

etc.                                                                                           (21) 

 

so that the positive and the negative energies get 

interchanged but there is no effect on the full energy level 

diagram. This is actually related to the invariance of the 

Hamiltonian with respect to the time reversal. For s=3/2, 

from eq.(15) g+= 4. We substitute g = g+= 4 in eq.(10) to 

obtain, 

 

10BH,6BH,2BH,-2BH,-6BH, -10BH, ..., etc.    (22) 
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so that we obtain the series,2, 6, 10, 14, 18, etc. This 

series has the interval 4. Not only the interval but the full 

series is the same as in the experimental data[18] at 9 Tesla. 

We have obtained the exact series without any approximation 

and all numbers are individually exact. Hence, the 



  

many-body corrections are not the cause of the series. For 

s=3/2, using the negative sign expression (16) we obtain, 

(1/2)g-=-1. In this case, the energy levels of g=-2 are the same 

as that of g=2 due to time reversal invariance. As the 

magnetic field is varied, different energy levels cross the 

Fermi level so that there are oscillations but that will not form 

plateaus. The plateaus are formed due to the flux 

quantization, 

 

lo
2B=no                                      (23) 

 

where o=hc/e. We substitute the flux quantization condition 

in eq.(10) so that the magnetic field completely disappears, 
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),…,                                           (24) 

 

Not only that there are factors like, 5/2, 3/2, 1/2, -1/2, -3/2, 

-5/2, …, , there is a factor of n also which has come from 

the flux quantization. We substitute the flux quantization in 

the series (22) so that we find, 
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),,                                                           (25) 

 

The series for n=1 is …, 10, 6, 2, -2, -6, -10, … but for n=2 

we have …, 20, 12, 4, -4, -12, -20, …, . Now the interval is 

not 4 but 8. The plateaus are now predicted at 4 which was 

not a part of the first series. When the field is increased from 

9 Tesla to 25 Tesla the plateaus at 4 are indeed found. The 

remaining values are too weak. In this way we are able to 

predict the plateaus at 4 in addition to those given by the 

series 2, 6, 10, …, etc. This means that our predicted values 

are in full agreement with the data. The values of 0 and 1 

were already present in ref.[1]. Away from the plateau the 

field dependence is of the form of, 10 B(
2

o

o

l

n




) + 10BH. 

Large charges are found in the quantum Hall effect of 

graphene. For spin 3/2, l = 0, we get, 

 

2
2

1
g                                     (26) 

 

or g+= 4. The harmonic oscillator type states are, 

 

,
2

1

2

1
n   3/2, 5/2, 7/2,                    (27) 

 

multiplying these by 2 due to (26), 

 

 2)
2

1
(n    1, 3, 5, 7, …                      (28) 

 

Making the two-particle states gives, 

 

,2)
2

1
(  gn  6, 10, 14, 18, …             (29) 

 

In the two layer system, we expect, 

 

  gnngngn
2

1
)(

2

1
)

2

1
(

2

1
)

2

1
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which is n(1/2)g with g=4, i.e., 2n= 2, 4, 6, 8, …, and the two 

particle states are at 4, 8, 12, 16, …. These predicted series 

are exactly the same as in the experimental data [18]. 

However, there is an alternative interpretation so that these 

are not the two particle states but they are four-particle states. 

In the eq.(30) the difference is shown. Let us use the sum 

instead of the difference so that the sign is changed to + 

instead of -, the result being, 
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(31) 

 

for 021  nn  

 

and 

 

  gggnn
2

1

2

1
)( 21                   (32)  

 

for 121  nn  then the resonances occur at g  

instead of at (1/2) g , in which case, the resonances occur 

also at cgn  )]2/1([ 3 . The multiple particle 

resonances are weaker than at (1). 

In the case of a cluster of electrons with spin up as well as 

spin down pairs, spin is zero for each pair, s=0, while the long 

range order is similar to that of an antiferromagnet, there is an 

exchange interaction which enhances the g value. The spin 

zero gives, 
2

1

12

2

1

2

1







l

l

g  so that g=1 and the energy 

levels occur at (
2

1
)

2

1
n  which gives 1/4 for n=0. The 

exchange enhancement changes this 1/4 charge to the 

value,
9.3

1
)(

4

1
 gg   for g=1 and 02564.0g . 

Therefore, in some of the samples, 1/4 will appear as 1/3.9. 

The value g  can be understood in terms of exchange 

interaction and the effective charge becomes e*/e=1/3.9. This 

effect will not occur in quenched samples and will be a 

characteristic of annealing. The spin clusters are not very 
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stable. 

 

VII. ELECTRON CLUSTERS IN GRAPHENE HALL EFFECT  

Recently, Bolotin et al. [19] have observed unusual 

fractions in the quantum Hall effect of graphene. From this 

study it is clear that  the number of electrons in a cluster is a 

small number such as one or two or nine which are subject to 

exchange interaction which explains the deviations from the 

exact fractions. As the field moves away from the plateau 

there is clustering of electrons and hence there is a phase 

transition type phenomenon. The unusual features in the 

observation of Bolotin et al. are the sample dependent 

clusters, the experimental values of which are, 

 

 =0.32±0.02= 16/50, 

 =0.68±0.05= 34/50,   ..                    (33) 

 

 =0.30±0.02= 3/10,       ..                  (34) 

 

 =0.46±0.02= 23/50, 

 =0.54±0.02= 27/50.      ..                 (35) 

 

We see that all of these sample-dependent fractions are 

correctly predicted and due to symmetries, we are able to 

arrange them in conjugate pairs. Pairing also helps in 

predicting the missing partners and looking for them. All of 

these denominators are even. Hence we take half of the 

denominator such as 25 which is 2l+1=25. Hence l=12 so that 

our expression, 
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This explains the two fractions given by (33). The 

calculated values agree with the measured values and identify 

the pairs correctly. A cluster of spin 9/2 is formed in the 

sample due to defects on the graphene sheets. For 2l+1=5, 

l=2, we have, 
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which explains (34) correctly and predicts 7/10  as a 

conjugate of 3/10. We thus see that clustering is the correct 

interpretation of the observation in graphene. The spin s=1 is 

correct for the electron pairs. The fraction 3/10 is observed 

while 7/10 is predicted. For l =12, we have, 
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These values agree with experimentally observed values. 

This means that all of the experimentally found fractions 

agree with (i)principal fractions, (ii) resonances, 

(iii)two-particle states and (iv) clusters. The principal 

fractions are the property of single electrons while clusters 

are formed due to imperfections in the samples. There are 

phase transitions in going near the plateau [20]. The flux 

quantization depends on the spin [21]-[22]. The theory fits 

well with the Gell-Mann’s theory of angular momentum [23]. 

It is found that Laughlin’s theory is not related to the 

experimental data of quantum Hall effect. The bandshave 

been calculated along with the vibrational frequencies in 

defect models of graphene which show that the essential 

structure of our theory is correct [24]-[25]. The atomic 

clusters have been found in GaAs [26]. The g values also 

confirm that there is a zero value upon doping [27]. The basic 

theory of the quantized Hall effect has recently been 

explained without using two dimensionality as in graphite 

[28]-[29]. 

 

 
Fig. 3. The band structure of 12 layers of AB stacking of graphene. 

 

VIII. CONCLUSIONS 

The quantum Hall effect of graphite is well explained by 

means of spin with Lande’s formula replaced by a linear 

relation and suitable consideration of symmetries. The 

graphene data is also explained by the same theory. The 

states occur in pairs of left and right handed helicities 

associated with the g values at high magnetic fields. The flux 

quantization becomes spin dependent and the fractional 

charge is determined by the angular momentum. Most of the 

fractions found in the data are explained by the 

single-particle theory. However, some of the fractions arise 

due to clustering in the samples. The samples of graphene 

tend to accumulate defects and hence electron clusters are 

found.  
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