
 

  

 

 

 

  

 

 

 

 

  

 

 

 

 

 

 

   

 

  

  

 

 

 

 

 

 

    

 

     

  

 

         

 

    

 

  

  

  

 

 

  

 

 

International Journal of Applied Physics and Mathematics, Vol. 3, No. 1, January 2013

8

 

Abstract—The problem of pricing contingent claims has been 

extensively studied for non-Gaussian models, and in particular, 

Black- Scholes formula has been derived for the NIG asset 

pricing model. This approach was first developed in insurance 

pricing where the original distortion function was defined in 

terms of the normal distribution. 

This approach was later studied to compare the standard 

Black-Scholes contingent pricing and distortion based 

contingent pricing. In this paper, we aim at using distortion 

operators by Cauchy distribution under a simple 

transformation to price contingent claim. We also show that we 

can recuperate the Black-Sholes formula using the distribution. 

 

Index Terms—Wang transformation, NIG and cauchy 

distribution under a simple transformation, distortion operator, 

contingent pricing.  

 

I. INTRODUCTION 

It is a well-known fact that the returns of most financial 

assets have semi-heavy tails and the actual kurtosis is higher 

than that of a normal distribution. A form of insurance risk 

pricing based on a normal-based distortion operator has been 

proposed [1]. This pricing principle is consistent with the 

financial theory of Gaussian option pricing as shown in [2]. It 

is shown that the celebrated Black Scholes formula can be 

recuperated through the distortions operator under the 

assumption of a normal model for asset prices [3]. The Wang 

not only possesses various desirable properties as a pricing 

method but also has a sound economic interpretation. Among 

them the most striking result in the transform, is that it is 

consistent with Buhlmann’s economic premium principle. 

The pricing principle approach of Wang must be somehow 

modified in order for it to capture the non- Gaussian feature 

of market prices. In recent years, several non-Gaussian 

distributions have been proposed in order to better the model 

asset prices. One of such models is the NIG process. Under 

non-Gaussian assumptions for asset returns, markets are 

incomplete and there are many equivalent martingale 

measures. This implies that the arbitrage –free price of 

contingent claims is not unique. Among this family of 

equivalent measures, one can find subclasses for which 

explicit formulae can work. One of such subclasses is the so 

called mean-correcting equivalent martingale [4]. Moreover, 

a Black–Scholes type formula can be worked out in this case. 

This is an interesting analogue to the situation found in the 

Brownian model for which the celebrated Black-Scholes 

formula for contingent claims was first developed, Instead, in 

 
Manuscript received July 1, 2012; revised December 3, 2012. 

The authors are with the Department of Mathematics, Abia State 

University, Uturu, P. M. B.2000. Nigeria. (e-mail:megaobrait@yahoo.com).  

 

this paper we aim at pricing contingent, using the Cauchy 

distribution operators (under a transformation). We also 

recover Black-Scholes formula.  This paper is organized as 

follows: 

In section 2, we present a brief summary of results about 

the Wang and NIG family distribution and the corresponding 

non-Gaussian financial theory. In section 3 we introduce the 

Cauchy [under a simple transformation] distortion operator 

and discuss some of their properties and features. In section 4, 

we show how this new operator is consistent with standard 

non-Gaussian financial theory by recuperating the 

Black-Scholes type formula.  Section 5 finally concludes.  

 

II. SUMMARY OF RESULT OF WANG DISTORTION AND NIG 

FAMILY OF DISTRIBUTION AND THE CORRESPONDING  

NON-GAUSSIAN FINANCIAL THEORY. 

Let  𝑋  be a random variable representing a financial 

(insurance) risk and let 𝐹𝑋  and 𝑆𝑋  be its distribution and 

survival function respectively. The premium (price) 

associated with this position is  

                   𝜋(𝑋) =  𝑔 𝑆𝑋  𝑥  𝑑𝑥 ,                  (1) 

where g is an increasing differentiable function with 

0<g<1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 [5]. 

Moreover, this function is such that g (0) = 0 and g (1) = 1. 

Equation (1) shows that the premium function π can be seen 

as a corrected mean under a new density measure given by; 

𝜋 𝑋 =  𝑥𝑔´ 𝑆𝑋 𝑥  𝑑𝐹𝑋 𝑥 = 𝐸𝜇  𝑋 ,        (2) 

where the 𝐸𝜇  denotes expectation under the density 

measure  𝜇 . Wang [6] Proposed S the following class of 

distortion function based on the normal distribution in order 

to price insurance and financial risks  

 𝑔𝛼 𝑢 = 𝜙(𝜙−1 𝑢 + 𝛼),                        (3) 

where ϕ, is the standard normal cumulative distribution 

function. Hamada and Sherris [2] shows that the distortion (3) 

is consistent with Black-Sholes formula. Let us consider the 

following price Kernel associated with distortion in (3).                                                                           

𝐻 𝑋 = 𝑕 𝑧 , 𝛼 =  𝑔𝛼 𝑆𝑋 𝑥  𝑑𝑥, 

where 𝑕 is a continuous, positive and increasing function. For 

a normal random variable 𝑍,  

𝐻 𝑋 = 𝑕 𝑥 , 𝛼 = 𝐸 𝑕(𝑧 + 𝛼) . 

Contingent Claim Pricing Using the Cauchy Probability 

Distortion Operator under Simple Transformation 

Bright O. Osu and Godswill U. Achi 

DOI: 10.7763/IJAPM.2013.V3.164



 

 

 

 

 

 

  

 

  

 

 

 

 

 

  

 

   

 

  

 

 

 

 

 

 

(8)                                                  

 

 

 

International Journal of Applied Physics and Mathematics, Vol. 3, No. 1, January 2013

9

In the Standard Black-Scholes model, asset prices follow a 

geometric Brownian motion with  

𝑑𝑋(𝑡)

𝑋(𝑡)
= 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 , 

so that 

𝑋𝑇 =  𝑋0𝑒
 𝜇−

𝜎2

2
 𝑇+𝜎𝑊𝑇 . 

A standard European call option has pay off at maturity T 

and we can write𝑓 𝑧 ,where 𝑧 is a standard normal random 

variable 

𝑓 𝑧 =  𝑋0𝑒
 𝜇−

𝜎2

2
 𝑇+𝜎 𝑇𝑧−𝑘

  . 

Applying the relation (kernel), we have 

𝐻 𝐶 𝑇, 𝑘 ; −𝛼 = 𝐸 𝑓(𝑧 + 𝛼)  

=   𝑋0𝑒
 𝜇−

𝜎2

2
 𝑇+𝜎 𝑇𝛼+𝜎 𝑇𝑧−𝑘

+
1

 2𝜋
𝑒

−𝑧2

2
𝑑𝑧 

∞

−∞

 

 

= 𝑋0𝑒
𝜇𝑇−𝜎 𝑇𝛼  1 − 𝜙(𝑧𝑚𝑖𝑛 + 𝜎 𝑇) − 𝑘 1 − 𝜙(𝑧𝑛)  

= 𝑋0𝑒
𝜇𝑇−𝜎 𝑇𝛼𝜙 −𝑧𝑚𝑖𝑛 + 𝜎 𝑇 − 𝐾𝜙(−𝑧𝑚𝑖𝑛 ). 

Calibrating Wang’s discounted certainty equivalent to the 

underlying security price using𝛼 =
(𝜇−𝑟𝑐)

𝜎
 𝑇 gives; 

𝑒− 𝑟𝑐𝑇𝐻 𝐶 𝑇, 𝑘 , −𝛼 = 𝑋0𝜙 
𝑙𝑛 𝑋0

𝑘
 +  𝑟𝑐 +

𝜎2

2
 
𝑇

𝜎 𝑇
  

 −  𝑒−𝑟𝑐𝑇𝑘𝜙 
𝑙𝑛 

𝑋0
𝑘

 +(𝑟−
𝜎2

2
)

𝜎 𝑇
 . 

The generalized version of the distortion in (3) is based on 

a  

Normal inverse Gaussian rather than a normal distortion. 

Definition 2: Let 𝜙𝑁𝐼𝐺  denotes the NIG cumulative 

distribution function 𝑁𝐼𝐺   𝛼𝛿,− 𝛽 𝛿
𝛼 ,  𝛼𝛿, 0 . We 

define the NIG distortion as 

𝑔𝛼,𝛽, 𝛿, 𝜃 𝑢 = 𝜙𝑁𝐼𝐺 𝜙𝑁𝐼𝐺−1 𝑢 + ∅            (4) 

These can be calibrated just like in Wang’s distortion. One 

interesting feature of this new distortion is that since it is 

based on a skewed distribution, the underlying probabilities 

are distorted asymmetrically at the tails. In Wang’s distortion, 

it is the same way because of the symmetry of the normal 

distribution. 

    

 

   

 

𝐻 𝑋, 𝜃 =  𝑔𝛼,𝛽,𝛿,𝜃 𝑆𝑋 𝑥  𝑑𝑥 = 𝐸  𝑕(𝑧 + 𝜃 𝛿
𝛼              (5) 

For the proof see [6]. 

Now 

𝑆𝑋 𝑡 = 𝑝

 
 
 
 
𝑧 − 𝜇

 𝛿
𝛼 

>
𝑕−1 𝑡 − 𝜇

 𝛿
𝛼  

 
 
 

 

Because of the symmetry property of the parameter 𝛽 in 

proposition 1, 𝑆𝑋 𝑡 = 𝜙𝑁𝐼𝐺  
𝜇−𝑕−1(𝑡)

 𝛿
𝛼 

 . 

Applying the distortion, we have 

𝑔𝛼,𝛽 ,𝛿,𝜃 𝑆𝑋 𝑡  = 𝜙𝑁𝐼𝐺  
𝜇−𝑕−1(𝑡)

 𝛿
𝛼 

+ 𝜃 . 

Considering the following exponential NIG asset price 

model 

 𝑆𝑡 = 𝑆0𝑒
𝑍𝑡 , 𝑡 > 0,                                 (6) 

where 𝑧𝑡  is a (𝑓𝑖 , 𝑝)2 − 𝑁𝐼𝐺  levy process with 

parameters 𝛼, 𝛽, 𝛿, 𝜇 . Then the (𝑓𝑖 , 𝑝) random variable 𝑆𝑇 is 

the price of the security at time T and it can be written as 

𝑆𝑇 = 𝑕(𝑧𝑡)  for a function 𝑕 𝑢 = 𝑆0𝑒
𝑢  and a random 

variable 𝑧𝑇 with distribution 𝑁𝐼𝐺 𝛼, 𝛽, 𝛿𝑇 , 𝜇𝑇 . 

If we apply proposition 1, we have that 

𝐻 𝑆𝑇 , −𝜃 = 𝑆0𝑒
𝜇𝑇−𝜃 𝜇

𝛼 −𝛿𝑇   𝛼2−(𝛽𝐻)2− 𝛼2−𝛽2 
, 

where  

𝜃 =
𝜇−𝑟−𝛿 𝛼2−(𝛽+1)2− 𝛼2−𝛽2

 𝛿
𝛼 

 .                               (7) 

In other words, under the NIG distortion with a value of 𝜃, 

the price 𝑆𝑇 evolves like a risk-neutral asset [7]. 

Hence, 

𝐻 𝑓 𝑆𝑇 , 𝑘 : −𝜃 =𝑆0  𝑒𝑧𝑛𝑖𝑔(𝑧, 𝛼, 𝛽, 𝛿𝑇 𝜇 + 𝜃∗ 
∞

ln 
𝑘

𝑠0
 

𝑇𝑑𝑧 

  −  𝑛𝑖𝑔(𝑧, 𝛼, 𝛽, 𝛿𝑇,  𝜇 + 𝜃∗ 𝑑𝑧
∞

ln⁡(
𝐾

𝑆0
)

.  (8)                                                  

This implies that the price of a standard European pay-off 

evaluated with the pricing kernel associated to the NIG 

distortion with a parameter 𝜃∗ is given by  

𝑒𝑟𝑡𝐻 𝑓 𝑆𝑇 , 𝑘 : −𝜃 

= 𝑆0𝑁𝐼𝐺  𝑙𝑛
𝑘

𝑆0
, 𝛼, 𝛽 + 1, 𝛿𝑇 𝜇 + 𝜃∗ 𝑇  

−𝐾𝑒−𝑟𝑇𝑁𝐼𝐺  𝑙𝑛
𝑘

𝑆0
, 𝛼, 𝛽, 𝛿𝑇,  𝜇 + 𝜃∗ 𝑇 .   (9) 

Equation (9) is the Black-Scholes type formula at time  

𝑡 = 0 [1].  

This shows that the NIG distorted pricing kernel with 

parameter  𝜃  reduces to the Black-Scholes type formula 

under the mean correcting Martingale measure. 

Proposition 1: consider the NIG distortion 𝑔𝛼 , 𝛽, 𝛿, 𝜃
defined in (4). Let Z be a random variable with distribution 

given by 𝑁𝐼𝐺 𝑔𝛼 , 𝛽, 𝛿, 𝜇 and let 𝑋 = 𝑕(𝑧) be the 

transformation through a continuous, positive, and increasing 

function 𝑕, then
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III. THE CAUCHY DISTRIBUTION UNDER A SIMPLE 

TRANSFORMATION

A random variable 𝑆 follows a Cauchy distribution under a 

simple transformation of dividing through by a constant with 

parameter vector (𝑎, 𝑏) , in symbolic notation 

𝑆~𝐶𝑎𝑢𝑐𝑕𝑦  𝑎, 𝑏 , if its probability density function is

𝑓 𝑆𝑡 ; 𝑎, 𝑏 =
𝑏𝜚

𝜋
 

1

𝑏2+(𝑠−𝑎)2 , − 1 < 𝑆𝑡 < 1,  (10)

where 𝜚 is the stabilization term [8]. The formula for the 

stabilization term is given as;

             𝜚 =
𝜋

2𝑏𝑡𝑎𝑛 −1(
1−𝑎

𝑏
)
.                                      (11)                       

The pdf (10) can therefore be written as

𝑓 𝑠; 𝑎, 𝑏 =
1

2𝑡𝑎𝑛−1  
1−𝑎

𝑏
 
 

1

𝑏2 +  𝑠 − 𝑎 2
 , −1 < 𝑆𝑡 < 1,

𝑎 < 1, 𝑏 ≥ 1.                                    (12)

Note that 𝑎 𝑎𝑛𝑑 𝑏 are ordinary parameter of location and 

scales. Under this transformation, the variance  𝑆 is obtained 

by;

𝑆𝑡 =
𝑥

 𝑥𝑚  
=

(𝑥−𝑟…,𝑥−1 ,𝑥0 ,𝑥1 ,..𝑥𝑞 )

 𝑥𝑚  
,                 (13)

by letting  𝑥𝑚  = 𝑚𝑎𝑥 𝑥−𝑟 , … 𝑥0, … 𝑥𝑞  , 𝑥 ∈ 𝑅, −𝑟 < 𝑥 <

𝑞: 𝑟, 𝑞 ∈ 𝑅 [9]. 𝑅 is the real space without the points, 

−∞ and ∞ X is a Cauchy random variable.

The first four moments of this probability density function 

are obtained as;

𝐸 𝑠 =
1

2 tan −1 
1−𝑎
𝑏

 
 

1

2
 ln 1 + 𝑎2 + 𝑏2 − 2𝑎 − ln 1 + 𝑎2 + 𝑏2 + 2𝑎  

+
𝑎

𝑏
 tan−1  

1−𝑎

𝑏
 − tan−1  

−1−𝑎

𝑏
  

 , (14)

𝐸 𝑠2 =
1

tan −1 
1−𝑎

𝑏
 
 
1 + 𝑎 ln 1 + 𝑎2 + 𝑏2 − 2𝑎 − ln 𝑎2 + 𝑏2  

+
𝑎2−𝑏2

𝑏
 tan−1  

1−𝑎

𝑏
 − tan−1  

−𝑎

𝑏
  

 , (15)

𝐸 𝑠3 =

1

2 tan −1 
1−𝑎

𝑏
 
 
4𝑎 +

3𝑎2−𝑏2

2
 ln 1 + 𝑎2 + 𝑏2 − 2𝑎 − ln 1 + 𝑎2 + 𝑏2 + 2𝑎  

+
𝑎2−3𝑎𝑏2

𝑏
 tan−1  

1−𝑎

𝑏
 − tan−1  

−1−𝑎

𝑏
  

 ,                                                                                                                                                                     

(16) 

and 

𝐸 𝑠4 

=
1

2 tan−1  
1−𝑎

𝑏
 

 
 
 
 
 
 

1

3
+ 𝑎 − 𝑏2 + 3𝑎2 + 2𝑎 𝑎2 − 𝑏2 ln 1 + 𝑎2 + 𝑏2 − 2𝑎 

+𝑏 𝑏2 − 6  tan−1  
1 − 𝑎

𝑏
  − 2𝑎 𝑎2 − 𝑏2 ln 𝑎2 − 𝑏2 +

𝑏 𝑏2 − 6  tan−1  
−𝑎

𝑏
   

 
 
 
 
 

(17)

From which we obtain the expression for the skewness and 

kurtosis as:

𝑠𝑘𝑒𝑤 𝑎, 𝑏 =
𝜑 2  𝑎,𝑏 +∅2 𝑎,𝑏 

 𝜑 1  𝑎,𝑏 +∅ 1  𝑎,𝑏  
3
2

, (18)        

where 

𝜑 1  𝑎, 𝑏 = 1 + 𝑙𝑛  
 1 + 𝑎2 + 𝑏2 − 2𝑎 𝑎

𝑎2 + 𝑏2
 

∅ 1  𝑎, 𝑏 =
𝑎2 − 𝑏2

𝑏
 𝑡𝑎𝑛−1  

1 − 𝑎

𝑏
 + 𝑡𝑎𝑛−1  

1 − 𝑎

𝑏
  

𝜑2 𝑎, 𝑏 = 4𝑎 +  𝑙𝑛
 1 + 𝑎2 + 𝑏2 − 2𝑎 

3𝑎2−𝑏2

2

1 + 𝑎2 + 𝑏2 − 2𝑎
 

∅2 𝑎, 𝑏 =
𝑎3 − 3𝑎𝑏2

𝑏
 𝑡𝑎𝑛−1  

1 − 𝑎

𝑏
 + 𝑡𝑎𝑛  

1 − 𝑎

𝑏
  

𝐾𝑢𝑟𝑡 𝑎, 𝑏 =
𝜑 3  𝑎,𝑏 +∅3 𝑎,𝑏 

 𝜑 1  𝑎,𝑏 +∅ 1  𝑎,𝑏  
2, (19)

where

𝜑3 𝑎, 𝑏 =
1

3
+ 𝑎 − 𝑏2 + 3𝑎2

+  𝑙𝑛
 1 + 𝑎2 + 𝑏2 − 2𝑎 

2𝑎 𝑎2−𝑏2 

2

𝑎2 + 𝑏2
 

∅ 3  𝑎, 𝑏 = 𝑏 𝑏2 − 6  𝑡𝑎𝑛−1  
1−𝑎

𝑏
 + 𝑡𝑎𝑛−1  

𝑎

𝑏
  .

Moreover, given 𝜉 =
1

tan −1 
1−𝑎

𝑏
 

, then the Cauchy 

distribution under simple transformation can be written as

𝐶 𝑎, 𝑏 = 𝜉
1

𝑏2 +  𝑆 − 𝑎 2
= 𝜉 𝑏2 +  𝑆 − 𝑎 2 −1

= 𝜉𝑏−2  1 +  
𝑆 − 𝑎

𝑏
 

2

 

−1

= 𝜉𝑏−2𝑒𝑥𝑝  −𝑙𝑜𝑔  1 +  
𝑆 − 𝑎

𝑏
 

2

  

≤ 𝜉𝑏−2𝑒𝑥𝑝  − 
𝑆−𝑎

𝑏
 

2

 . (20)

where 𝑎 , 𝑏 are obtained by applying the maximum

likelihood estimation method as [8]:

𝑎 =  (𝑆𝑖 + 1)𝑛
𝑖=0 ±  (𝑆𝑖 + 1)2 − 4(𝑆𝑖 + 𝑏)2,       (21a)

and

From the above four expressions for the moments of S, we 
have ;  lim௔՜଴,   ௕՜଴ ,ଵሺܽߛ ܾሻ ൌ 0 and   lim௔՜଴,௕՜ஶ ,ଵሺܽߛ ܾሻ ൌ
0.

Hence the limiting values of the kurtosis as tends to zero 
and b tends to infinity are given by lim௔՜଴,௕՜଴ ,ଶሺܽߛ ܾሻ ൌ
 1/3 and lim௔՜଴,   ௕՜ஶ ,ଶሺܽ ߛ ܾሻ ൌ െ1
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𝑏 =    1 − 𝑎 (𝑆𝑖 − 𝑎)𝑛
𝑖=0 .                       (21b) 

The NIG distribution as well as the Cauchy distribution are 

infinitely divisible and the Cauchy distribution appears as the 

opposite limit as 𝑎 → 0  for the inverse Gaussian distribution; 

𝑁𝐼𝐺 (𝑥, 𝑎, 𝛽, 𝜇, 𝛿)~𝑘 𝑥 1.5 𝑒𝑥𝑝  
−𝑎𝛿

𝛿
 𝑥 +

𝛽

𝛿
𝑥  

when  𝑥 → 0. We therefore assume herein that a random 

variable 𝑋 ~  𝐶(𝑎, 𝑏 . 
 

IV. PROBABILITY DISTORTION APPROACH AND CHANGE OF 

MEASURE 

Let 𝑊 =  𝑊𝑡 , 𝑡 ≥ 0  be a standard Brownian motion and let 

𝐼 = 𝐼𝑡 , 𝑡 ≥ 0  be an IG process with parameters = 1, 𝑏 =

𝛿 𝛼2 − 𝛽2 , with 𝛼 > 0, −𝛼 < 𝛽 < 𝛼 and  𝛿 > 0 ; then it can be 

shown that the stochastic process𝑋𝑡 = 𝛽𝛿2𝐼𝑡 + 𝛿𝑊𝐼𝑡 is an NIG 

process with parameters 𝛼, 𝛽 and 𝛿 [10]. 

Let  𝐹(𝑡, 𝑥) = 𝑒𝑥−1
2 𝑡  be the future price and let 𝑋𝑡 = 𝐵𝑡 . 

Then we formally obtain 

𝑑𝐹 𝑡, 𝑥 =
𝜕𝐹

𝜕𝑡
𝑑𝑡 +  

𝜕𝐹

𝜕𝑥
𝑑𝑋𝑡

𝑖

𝑑

𝑖=1

+  
𝜕2𝐹

𝜕𝑥2
𝑑𝑋𝑡

𝑖𝑑𝑋𝑡
𝑗

𝑑

𝑖,𝑗=1

 

= 𝑒𝐵𝑡−
1

2 𝑡 . 

This implies that 

𝑑𝐹 𝑡, 𝐵𝑡 = 𝐹 𝑡, 𝐵𝑡 𝑑𝐵𝑡 . 

Consider the stochastic exponential  

 

 𝜀 𝐵 𝑡 = 𝑒𝐵𝑡−
1

2 𝑡                    (22) 

 

We see that it has the stochastic exponential 

  𝑑𝜀 𝐵 𝑡 = 𝜀 𝐵 𝑡𝑑𝐵𝑡                 (23) 

This relation can be treated as a stochastic differential 

equation with a solution delivered by (22). Thus 

 𝜀 𝑋 𝑇 = 𝜀(0)𝑒𝛽𝛿2𝐼𝑡+𝛿𝑊𝐼𝑡−
1

2
𝑡 .            (24) 

Putting (24) in a broader context we consider now the 

process 

𝑍𝑡 = 𝑒𝑥𝑝   𝑏 𝑡, 𝑤 𝑑𝐵𝑡 −
1

2  𝑏2 𝑠, 𝑤 𝑑𝑠
𝑡

0

𝑡

0
 ,    (25) 

where 𝑏 =  𝑏 𝑡, 𝑤  
𝑡≥0

 is a non-anticipating process with 

𝑃 𝑏2 𝑠, 𝑤 𝑑𝑠 < ∞ = 1, 𝑡 > 0. 

Setting 

 𝑌𝑡 =  𝑏 𝑠, 𝑤 𝑑𝐵𝑡 − 1
2  𝑏2 𝑠, 𝑤 𝑑𝑠

𝑡

0

𝑡

0
   (26) 

 

and 𝐹 𝑦 = 𝑒𝑦 , we can use ito’s formula to see that that 

process 𝑍 =  𝑍𝑡 𝑡≥0  (the Girsanov exponential) has the 

stochastic differential 

 𝑑𝑍𝑡 = 𝑍𝑡𝑏 𝑡, 𝑤 𝑑𝐵𝑡                   (27) 

Lemma 1: Let  𝑋𝑡 𝑡≥0  be a drifting Brownian motion 

process where  𝑋𝑡 = 𝛽𝛿2𝐼𝑡 + 𝛿𝑊𝐼𝑡  and  𝑊𝑡 𝑡≥0  is a ℙ- 

Brownian motion and 𝛽 and 𝛿 are constants. Then a measure 

under which  𝑋𝑡 𝑡≥0 is a martingale is given as  

𝑊𝐼𝑡

 𝐿 = 𝑊𝐼𝑡 + 𝛽𝛿𝐼𝑡                      (28) 

Proof : Taking 𝜗 =
𝛽𝛿2

𝛿
, under the probability measure 

ℙ(𝐿) of Girsonov’s theorem  we have that the process 

 𝑊𝐼𝑡

 𝐿  
0≤𝐼𝑡≤𝐼𝑇

,   defined by  

              𝑊𝐼𝑡

 𝐿 =  𝑊𝐼𝑡 +  𝜗𝑠
𝐼𝑡

0
𝑑𝑠,              (29)                  

is a standard Brownian motion [11]. Thus  

𝑊𝐼𝑡

 𝐿 =  𝑊𝐼𝑡 +  𝛽𝛿

𝐼𝑡

0

𝑑 

= 𝑊𝐼𝑡 + 𝛽𝛿𝐼𝑡 , 

is a Brownian motion and  𝑋𝑡 = 𝛿𝑊𝐼𝑡  is a scaled Brownian. 

Notice that  

𝔼ℙ 𝑋𝑡
2 = 𝔼ℙ 𝛽2𝛿4𝐼𝑡

2 + 2𝛽𝛿2𝐼𝑡 + 𝛿2𝑊𝐼𝑡
2  

= 𝛽2𝛿4𝐼𝑡
2 + 𝛿2𝐼𝑡 , 

where as 

    𝔼ℙ(𝐿)
 𝑋𝑡

2 = 𝔼ℙ(𝐿)
 𝛿2 𝑊𝐼𝑡

(𝐿)
 

2
 =  𝛿2𝐼𝑡 . 

If we apply the kernel, the distortion 𝑔 𝑎,𝑏 on 𝑔𝑥 , we have 

𝜀 𝑋 𝑇 = 𝜀(0)𝑒𝛽𝛿2𝐼𝑡+𝛿𝑊𝐼𝑡−
1

2
𝑡
.                    (30) 

a standard European call option has pay-off at maturity 

ℭ 𝜀 𝑇 , 𝐾 =  𝜀 𝑆𝑇 − 𝐾 +,    0 ≤ 𝑡 ≤ 𝑇.      (31)      

where 𝑆𝑇 is the price of the security at maturity and we can 

write this as  𝑓(𝑍) where 𝑍 is a Cauchy random variable and  

𝑓 𝑍 =  𝜀 0 𝑒𝛽𝛿2𝐼𝑡+𝛿 𝑇𝑍−
1

2
𝑡 − 𝐾 

+
.              (32) 

Theorem 1: Let 𝑆 = 𝑥 −
1

2
𝑇, where 𝑥 = 𝛽𝛿2𝐼𝑡 + 𝛿 𝑇𝑍 

and let ℭ: ℝ → ℝ satisfy for 𝛼 > 0 

 𝑒−𝛼𝑆2
 ℭ(𝑆) 𝑑𝑆 < ∞

+∞

−∞
.  

Then  

𝐻 ℭ 𝜀 𝑇 , 𝐾  = 𝑒𝛽𝛿2𝐼𝑇−
1

2
𝑇− 

𝜋

2
𝑏2𝛿 𝑇 

2

𝐶 𝑆 − 𝑏2𝛿 𝑇 −

𝐾𝐶  
𝑆

𝑏
 .(33) 
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Proof : Applying the relation to Wang distortion formula 

on (32)given 𝛼 = 𝑏−2, we have: 

𝐻 ℭ 𝜀 𝑇 , 𝐾  = 𝜉𝑏−2   𝜀 0 𝑒𝛽𝛿2𝐼𝑡+𝛿 𝑇𝑍−
1

2
𝑇

+∞

−∞

− 𝐾 
+ 𝑒𝑥𝑝  − 

𝑍 − 𝑎

𝑏
 

2

 𝑑𝑍 

= 𝜉𝑏−2   𝜀 0 𝑒𝑆−𝑎 − 𝐾 
+∞

−∞

𝑒𝑥𝑝  − 
𝑍

𝑏
 

2

 𝑑𝑍 

= 𝜉𝑏−2  𝑒𝑆−𝑎− 
𝑍

𝑏
 

2𝑆

−∞

𝑑𝑍 − 𝐾𝜉𝑏−2  𝑒−𝑍 2
𝑑𝑍  

𝑆

𝑏

−∞

 

= 𝜉𝑏−2  𝑒𝑆−𝑎− 
𝑍

𝑏
 

2𝑆

−∞

𝑑𝑍 − 𝐾𝐶  
𝑆

𝑏
  

= 𝜉𝑏−2𝑒𝛽𝛿2𝐼𝑇−
1

2
𝑇  𝑒𝛿 𝑇𝑍− 

𝑍

𝑏
 

2𝑆

−∞

𝑑𝑍 − 𝐾𝐶  
𝑆

𝑏
  

= 𝜉𝑏−2𝑒𝛽𝛿2𝐼𝑇−
1

2
𝑇  𝑒

−
1

𝑏2 𝑍
2−𝑏2𝛿 𝑇𝑍 

𝑆

−∞

𝑑𝑍 − 𝐾𝐶  
𝑆

𝑏
  

= 𝜉𝑏−2𝑒𝛽𝛿2𝐼𝑇−
1

2
𝑇  𝑒

−
1

𝑏2 𝑍−𝑏2𝛿 𝑇 
2
− 

𝜋

2
𝑏2𝛿 𝑇 

2𝑆

−∞

𝑑𝑍

− 𝐾𝐶  
𝑆

𝑏
  

= 𝜉𝑏−2𝑒𝛽𝛿2𝐼𝑇−
1

2
𝑇− 

𝜋

2
𝑏2𝛿 𝑇 

2

 𝑒
−

1

𝑏2𝑍 
2

 𝑆−𝑏2𝛿 𝑇 

−∞

𝑑𝑍 

− 𝐾𝐶  
𝑆

𝑏
  

= 𝑒𝛽𝛿2𝐼𝑇−
1

2
𝑇− 

𝜋

2
𝑏2𝛿 𝑇 

2

𝐶 𝑆 − 𝑏2𝛿 𝑇 − 𝐾𝐶  
𝑆

𝑏
 . 

Remark: if 𝑏 =   2  the result is as in [2]. 

 

V. TIME –VARYING DRIFT AND VOLATILITY FOR THE 

SECURITY PRICE 

Consider the Cauchy distortion under a transformation 

defined in [2]. Let 𝑍 be the random variable with distribution 

given by 𝐶(𝑎, 𝑏)  and let 𝑋 = 𝑕(𝑍)  be a transformation 

through a continuous, positive and increasing function h. 

We now have to study how this distortion affects an 

exponential Levy model for assets prices and in particular if 

there is a value of  𝜃 such that discounted asset prices behave 

like risk-neutral prices. 

Let us consider the following exponential Cauchy (under a 

transformation) asset price model 

  𝑆𝑡 = 𝑆0𝑒
𝑧𝑡 ,     𝑡 > 0                              (34) 

where 𝑍𝑡  is a (𝑓𝑡 , 𝑝)  Cauchy-Levy (under transformation) 

process with parameters (𝑎, 𝑏). 

Then the  𝑓𝑡 , 𝑝 −random variable 𝑆𝑡  is the price of the 

security at time T and it can be written as 𝑆𝑇 = 𝑕 𝑍𝑇 . 
For a function 𝑕 𝑈 =  𝑆0𝑒

𝑢  and a random variable  𝑍𝑇 

with distribution 𝐶 𝑎, 𝑏 , then we have; 

 

𝐻 𝑆𝑇 , −𝜃 = 𝐸[𝑓(𝑍 + 𝜃 ) ] 

=  𝜀 0 𝑒𝛽𝛿2𝐼𝑡+𝛿 𝑇𝑍−
1

2
𝑡 − 𝐾 

+
. 

Definition 2 ： Let(𝜑, 𝐹 𝐹𝑡  , 𝑝) be a filtered probability 

space. An adapted cadlag R-valued process, 𝑋 =   𝑋(𝑡) 𝑡≥0 

with  𝑥 0 = 0  is a Cauchy-levy process under 

transformation if 𝑥(𝑡)  has independent and stationary 

increment distributed as Cauchy (; 𝑎, 𝑏) 

Now we choose 𝜃 such that the discounted price process 

 exp − 𝑟 − 𝑞 𝑡 𝑠𝑡 , 𝑡 ≥ 0  

is martingale ie 

  𝑆0 = exp − 𝑟 − 𝑞 𝑡 𝐸𝜃 [𝑆𝑡],                     (35) 

where expectation is taken with respect to the law with 

density 𝑓𝑡
 𝜃  𝑥 , 𝑞  is the rate of yield of compound dividends 

per annum and r the interest rate. Let ∅ 𝑢 = 𝐸[exp 𝑢𝑖𝑋𝑖 ] 
denote the characteristics function of 𝑋𝑖 . Then from (35),  in 

order to let the discounted prices process be a Martingale, we 

need to have as in [10]; 

 exp 𝑟 − 𝑞 =
∅(−𝑖 𝜃+1 )

∅(−𝜃)
 .                        (36) 

It is easy to see that 

𝜃 =  
𝜇−𝑟+𝑞−2 (𝑎−𝑏)

2( 𝑎−𝑏)
 ,                      (37) 

such that 

𝑆𝑇 = 𝑊𝑡 +  
𝑞+𝜇−𝑟−2 𝑎−𝑏 

2 𝑎−𝑏 
                      (38) 

and so 

  𝜁𝑡 ≜
𝑑ℚ𝜁

ℚ
 𝔉 

𝑡 = 𝑒𝑥𝑝 2 𝑎 − 𝑏 𝑋𝑡 − 2 𝑎 − 𝑏 𝑡 . 

Now, 

𝐸𝑡 = 𝐸0𝑒𝑥𝑝 2 𝑎 − 𝑏 𝑆𝑡 − 2 𝑎 − 𝑏 𝑡 +  𝑟 − 𝜇 𝑡 . 

The pay-off of the contract will be 𝐶𝜏 =  𝐸𝜏 − 𝐾 .  

Expressing 𝐸𝜏  as a function of 𝑋𝜏  gives (36) and so using that 

 𝑋𝑡 𝑡≥0 is a ℚ- Brownian motion gives the fair value of 𝐾 as  

𝐾 = 𝐸ℚ 𝐸𝜏 = 𝑒 𝑟−𝜇 𝐸0. 

Hence calibrating Cauchy discounted certainty equivalent 

to the underlying security price using (37) gives 

𝑒−𝑟𝑐𝑇𝐻 ℭ 𝜀 𝑇 , 𝐾  =   𝜀(0)𝐶  
ln 

𝑆0
𝐾

 +𝜇−𝑟+𝑞+2 (𝑎−𝑏)𝑇

2( 𝑎−𝑏) 𝑇
 −

𝐾𝐶𝑒−𝑟𝑐𝑇  
ln 

𝑆0
𝐾

 +𝜇−𝑟+𝑞−2 (𝑎−𝑏)𝑇

2( 𝑎−𝑏) 𝑇
 , 

 

which is the Black-Scholes price of the call option at time 0 . 
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This demonstrates that Cauchy’s distortion function approach 

recovers the Black-Scholes price of a European call options. 

 

VI. CONCLUSION 

The most common way to estimate the value of options is 

to use the Black-Sholes formula. If the price changes of a 

security are log normally distributed, the Black-Sholes 

formula provides the theoretical price of the so called 

European options on that security.  Unfortunately, there is 

overwhelming evidence that price changes are not 

log-normally distributed. Instead, security price changes have 

what is often called fat-tails.  They also exhibit skewness. 

Fat-tails can be modelled with so called stable distribution 

which is also referred to as Levy distributions and 

Levy-Pareto distribution.  A Gaussian distribution is a special 

case of stable distribution. The Cauchy distribution is another 

well-known example of a stable distribution.  In fact, the 

Gaussian and Cauchy distribution are the only two stable 

distributions for which closed form mathematical formula 

exist and it is consistent with the behaviour we observe in real 

capital markets. Hence equation (35) demonstrates that 

Cauchy distortion function approach under a transformation 

recovers the Black-Scholes price of a European call option. 
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