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 

Abstract—In this paper, the rotated explicit group method 

for solution of time domain two dimensional electromagnetic 

wave propagation is derived using the rotated finite difference 

approximation. The method is unconditionally stable and 

provides a significant savings in the computational time 

compared to the other standard methods of natural ordering. 

 
Index Terms—Maxwell's equation, FDTD, scalar wave 

equation,  crank-nicolson, explicit decoupled group (EDG).   

 

I. INTRODUCTION 

Finite Difference Time Domain (FDTD) method is one of 

the most commonly used numerical methods for the 

simulation of wave propagation. This method, known as 

Yee's algorithm, computes the field components by 

discretizing the Maxwell's curl equations both in time and 

space, and then solving the discretized equations in a time 

marching sequence by alternatively calculating the electric 

and magnetic fields in the computational domain [1]. 

Recently, a reduced scalar version of the FDTD method 

was developed by Aoyagi et. al [2]. In comparison with the 

FDTD method, the new version called the scalar wave 

equation finite difference time domain (WE-FDTD) requires 

less computation and storage. As both the FDTD and 

WE-FDTD methods are based on an explicit finite difference 

algorithm, the Courant-Friedrichs-Lewy (CFL) condition 

must be satisfied. A maximum time step size is limited by the 

minimum cell size in a computational domain. To overcome 

this problem, implicit methods must be employed with have 

no limit on the time-step size arising from the stability 

consideration. However, in each time step a global system of 

equations has to be solved of which will need more cpu time 

and suffer from large numerical dispersion error. Solving the 

problems by discretizing its computational domains in a 

group of points may reduce the computational time and give 

as good results as the conventional methods. This was proven 

when Evans and Abdullah skillfully developed the explicit 

group method according to the asymmetric Saul'yev scheme 

and applied the method to the solution of parabolic equations, 

Burger equations, diffusion equations, etc ([3]-[5]). Later 

Abdullah and Othman [6] developed the techniques known 
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as explicit decoupled method (EDG) and modified explicit 

group (MEG) method to reduce the algorithm complexity 

that arises by using explicit group method on elliptic 

problems. All these methods are favorable in parallelism due 

to their explicit nature. 

In this paper, we extend the concept of explicit decoupled 

group method for solution of two dimensional 

electromagnetic wave propagation. We derived the solving 

formula for a group of points using rotated Crank-Nicolson 

finite difference scheme which is unconditionally stable. 

Numerical simulations were carried out on Sun-Fire-v240 

machine with one processor and significant savings in the 

computational time were achieved. 

 

II. STANDARD FORMULATIONS 

Consider a two-space dimensional electromagnetic 

problem given by the transverse magnetic (TM) waves where 

the field components xx HE ,  and yH  exist. 
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To reduce the algorithm complexity in the TM waves 

formulations, the equations can be combined in a source free 

two-dimensional [2] as 
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where c  is the speed of light in the domain medium and 

= ( , , )u E x y tz . Equation (4) forms the basics of the WE-FDTD 

algorithm which can be discretized in many ways. By 

averaging the central difference approximation on the 

right-hand side of equation (4) about the points (i,j,n+1) and 

(i,j,n-1), the standard difference equation known as the 

Crank-Nicolson method is obtained as 
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After simplification, the equivalent equation with 2= r  

and  /= tc  is obtained as  
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Fig. 1. Computational molecule of the crank-nicolson scheme with natural 

ordering 
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(5) 

 where t  is the time step and   is the space cell size in the 

x  and y  directions respectively. It has been established that 

this equation is unconditionally stable with principal error of 

order )( 22 tO . The computational molecule is shown in 

Fig (1).  

 

III. ROTATED CRANK NICOLSON FINITE DIFFERENCE 

APPROXIMATION 

 Another type of finite difference that can be used to 

approximate (4) is the cross orientation. This can be done by 

rotating the x  and y  plane axis clockwise by 450 with the 

grid spacing ∆→√2∆. With the new displacement as shown 

in Fig (2), the rotated finite difference approximation for (4) 

becomes  
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Upon simplification, the following finite difference 

equation is obtained:  
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(6) (6) 

The rotated scheme is also unconditionally stable and has a 

principal local truncation error of order )( 22 tO . 

IV. IMPLEMENTATION OF THE EDG METHOD 

We develop the solving formula for the explicit group 

points using rotated finite difference scheme based on (6) for 

any group of four points A(i,j), B(i+1,j+1), C(i+1,j) and 

D(i,j+1) on the discretized domain at any time level n + 1. 
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Fig. 2. Computational molecule of the rotated crank-nicolson scheme with 

natural ordering 

Thus, will result in 4×4 implicit system matrix form as  
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The system leads to a decoupled system of 2×2 equations 

which can be written in explicit form as:  
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and 
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 This gives the solving formula for explicit decoupled 

group of two points on the solution domain. The 

computational molecule of the explicit decoupled group 

system is illustrated in figure (3). From the diagram, it can be 
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observed that the iterative evaluation of equation (7) involve 

only points of type until a convergence criteria is met. The 

remaining points can be evaluated directly at the required 

time steps using (5) which is the standard Crank-Nicolson 

scheme. These equations can be implemented independently, 

therefore the execution time can be saved by nearly as half as 

it iteration is only carried out on half of the solution domain. 

For simplicity, we consider the number of interior points (m – 

1) to be an even number such that each group 

2, =1,2,...,(( 1) / 2)G l ml    consists of two points.  

1

1

0 2 3 4 5

2

3

4

5

 
Fig. 3. The explicit decoupled group solution domain with natural ordering 

strategy of m = 5 

 

V. NUMERICAL EXPERIMENTS AND RESULTS 

We perform the numerical simulation on (4) in a lossless 

medium with normalized electric permittivity and magnetic 

permeability, that is ε = μ = 1. We set the solution region as 

[0,1][0,1]=   surrounded by PEC boundary conditions. 

The exact solution of the problem is given by  

( , , ) = 2 cos( 2 )sin[ (1 )]sin[ (1 )]E x y t t x yz      

The experiment was run on a Sun-Fire-v240 machine with 

one processor running and carried out on different grid sizes. 

Comparison of results for the EDG-CN are made with 

available results obtained from the FDTD, standard 

Crank-Nicolson (5) and rotated Crank-Nicolson (6) methods 

for various courant factors, λ.   

TABLE I: COMPARISON OF NUMBER OF ITERATION (ITE), MAXIMUM ERROR 

(M.E), AVERAGE ABSOLUTE ERROR (A.A.E) AND CPU TIME OF THE 

METHODS WITH Λ = 0.25, AFTER 10 TIME STEPS.  

h-1 Methods ite M.E A.A.E 
CPU 

time (s) 

33 FDTD - 7.889e-3 3.497e-3 0.016 

 
CN 

Rotated-CN 

EDG-CN 

5 

5 

6 

8.715e-5 

2.462e-4 

2.466e-4 

3.759e-5 

1.062e-4 

2.127e-4 

0.032 

0.032 

0.032 

 65   FDTD  

 CN  

 Rotated-CN  

 EDG-CN  

 -  

 4  

 4  

 5 

 2.057e-3  

 5.992e-6  

 1.683e-5  

 1.719e-5  

 8.661e-4  

 2.506e-6  

 7.036e-6  

 1.417e-5  

 0.046 

 0.124 

 0.124 

 0.162 

 81   FDTD  

 CN  

 Rotated-CN  

 EDG-CN  

 -  

 4  

 4  

 5 

 1.326e-3  

 2.501e-6  

 6.916e-6  

 7.392e-6  

 5.536e-4  

 1.039e-6  

 2.874e-6  

 5.917e-6  

 0.154 

 0.426 

 0.378 

 0.582 

 101   FDTD  

 CN  

 Rotated-CN  

 EDG-CN  

 -  

 4  

 4  

 5 

 8.538e-4  

 7.783e-7  

 2.743e-6  

 3.135e-6 

 3.540e-4  

 3.215e-7  

 1.134e-6  

 2.502e-6  

 0.328 

 0.522 

 0.528 

 0.611 

     

The results from table (I-III) show that the EDG-CN 

method is relatively good as comparison to the conventional 

FDTD and the standard Crank-Nicolson methods in terms of 

accuracy. However, the rate of convergence using the EDG 

method is faster than the the standard Crank-Nicolson 

methods due to it less iteration number. Furthermore, the 

proposed EDG method significantly reduces the cpu time to 

nearly 50% and as fast as the conventional FDTD method. 

TABLE II: COMPARISON OF NUMBER OF ITERATION (ITE), MAXIMUM ERROR 

(M.E), AVERAGE ABSOLUTE ERROR (A.A.E) AND CPU TIME OF THE 

METHODS WITH Λ = 1.0, AFTER 10 TIME STEPS. 

h-1 Methods ite M.E A.A.E 
CPU 

time (s) 

 33   FDTD  

 CN  

 Rotated-CN  

 EDG-CN  

 -  

 15  

 13  

 7  

 7.889e-3  

 6.883e-3  

 8.744e-3  

8.738e-3  

3.497e-3  

 3.035e-4  

 3.772e-3 

 7.538e-3  

1.1 

2.6 

2.3 

1.2 

 65   FDTD  

 CN  

 Rotated-CN  

 EDG-CN  

 -  

 14  

 12  

 6 

 3.622e-2  

 6.000e-4  

 7.529e-4  

 7.468e-4  

 1.284e-2  

 2.509e-4  

 3.148e-4  

 6.245e-4  

 4.4 

 7.7 

 8.7 

 4.7 

 81   FDTD  

 CN  

 Rotated-CN  

 EDG-CN  

 -  

 13  

 11  

 6  

2.019e-2  

 2.619e-4  

 3.287e-4  

 3.194e-4  

8.424e-3  

1.088e-4  

 1.366e-4  

 2.654e-4  

 7.9 

 17.3 

 16.6 

 8.5 

 101   FDTD  

 CN  

 Rotated-CN  

 EDG-CN  

 -  

13  

 11  

 6 

1.323e-2  

 1.194e-4  

1.410e-4  

1.354e-4  

 5.482e-3 

4.938e-5  

 5.831e-5  

 1.117e-4  

 15.1 

 35.1 

 33.5 

 16.4 

     

TABLE III: COMPARISON OF NUMBER OF ITERATION (ITE), MAXIMUM 

ERROR (M.E), AVERAGE ABSOLUTE ERROR (A.A.E) AND CPU TIME OF THE 

METHODS WITH Λ = 4.0, AFTER 10 TIME STEPS. 

h-1 Methods ite M.E A.A.E 
CPU 

time (s) 

 33   FDTD  

 CN  

 Rotated-CN  

 EDG-CN  

 -  

 30  

 108 

 54  

 -  

 3.244e-1  

3.304e-1  

3.304e-1 

-  

 1.399e-1  

1.425e-1  

2.850e-1  

- 

9.2 

8.2 

4.3 

 65   FDTD  

 CN  

 Rotated-CN  

 EDG-CN  

 -  

 27  

105 

54  

 -  

 2.221e-2  

2.258e-2 

2.247e-2  

 -  

 9.285e-3  

9.443e-3 

1.879e-2 

- 

20.7 

19.2 

9.4 

 81   FDTD  

 CN  

 Rotated-CN  

 EDG-CN  

 -  

 132  

109  

55  

 - 

 2.293e-2  

2.330e-2 

2.317e-2  

 -  

 9.529e-3  

9.681e-3  

1.926e-2  

- 

 27.4 

25.2 

 12.5 

 101   FDTD  

 CN  

 Rotated-CN  

 EDG-CN  

 -  

 132  

 109 

55  

 - 

 1.444e-2  

1.464e-2  

1.449e-2  

-  

 5.970e-3  

6.052e-3  

1.199e-2  

- 

 68.5 

 65.6 

 20.3 

     

 

VI. CONCLUSION 

We have demonstrated the implementation of the explicit 

decoupled group (EDG) method on two dimensional 

electromagnetic wave propagation based on the rotated 

Crank-Nicolson approximation. It is observed that the EDG 

method provides significant saving in the computational time 

compared to the other methods. In fact, the EDG method can 

be one of the computational tools for solving any problems 

related to electromagnetism as well as the FDTD method. 
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