

 

Abstract—Although methods for parameter estimation for 

stochastic models of disease transmission are now well-

established, the picture is much less clear for model assessment. 

We consider various approaches for model choice problems in 

the context of data on disease outbreaks collected at the level of 

individual households. The study provides practical values to 

identify feasible and numerical efficient model for given 

epidemic data.  

 

Index Terms—Model choice, stochastic epidemic models, 

reversible jump MCMC, Bayes factor. 

 

I. INTRODUCTION 

Inferential framework for stochastic epidemic models 

have been well developed these years (for instance, [1] [2]), 

there are still few literature addressing the area of model 

choice. Especially, identifying an appropriate analysis tool 

for the specific data set is challenging. Model choice is 

concerned with the problem of distinguishing competing 

models. Various analysis tools have been designed and 

utilised in applications of model choice. Different criteria 

show their own bias on different statistics of model 

parameters. In this paper, we mainly study the applications 

of the different criteria and computational methods in the 

area of epidemic models. We aim to set up an effective 

scheme to identify a feasible criterion for specific epidemic 

data sets. Since MLE, MCMC and RJMCMC are associated 

with choice criteria in different models in practice, the 

technical problem arising from employing these 

computational methods will be investigated as well. 

 

II. MODEL CHOICE STATISTICS  

A. AIC 

AIC initially proposed by Akaike [3] is used as a measure 

of information lost when a particular model is used in place 

of the unknown true model. 

AIC = −2lnLmax + 2k,                                (1) 

where Lmax is the maximum likelihood computed by the 

model and k is the number of parameters of the model. 

Given a data set, several competing models may be ranked 

according to their AIC and the best model is the one which 

minimises AIC.  

B. BIC and DIC 

To tackle the over-fitting problem, in which additional 
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parameter increases the likelihood, BIC is introduced by 

Schwarz [4] to add a penalty term for the number of 

parameters in the model. 

BIC=−2lnLmax+klnN                             (2) 

where N is the sample size. 

As a combination of the logic from both Bayesian method 

and information theory, DIC is a hierarchical modelling 

generalisation of the AIC and BIC [5]. Let 𝐷(𝜃) =
−2𝑙𝑛𝐿 + 𝐶 where C is a constant dependent solely on data 

which will vanish from any derived quantity. We define 

𝑝𝐷 = 𝐷 𝜃 − 𝐷(𝜃 ). The DIC is defined as  

DIC=D(𝜃) + 𝑝𝐷 .                                (3) 

DIC is derived from the MCMC posterior samples. 

Therefore, the values of DIC are dependent on the priors 

employed during the MCMC simulations. 

C. BF 

Bayes Factor (BF) is another important tool which 

requires assessment of the sensitivity of the conclusion to 

the prior distribution. BF of model M1 over model M2 on 

the data space D is defined as 

𝐵12 =
𝑃(𝐷|𝑀1)

𝑃(𝐷|𝑀2)
                                  (4) 

P(D|Mi) is the marginal likelihood for model i. If the 

models M1 and M2 are parametrised by vectors of 

parameters θ1 and θ2, we have 

𝐵12 =
∫ 𝜋 𝜃1 𝑀1 𝑃 𝐷 𝜃1 ,𝑀1 𝑑𝜃1

∫ 𝜋 𝜃2 𝑀2 𝑃 𝐷 𝜃2 ,𝑀2 𝑑𝜃2
                        (5) 

where 𝜋 𝜃𝑖 𝑀𝑖 , 𝑖 = 1,2  are the prior distributions. 

 

III.  NUMERICAL IMPLEMENTATIONS  

A. Independent Households  

In the first case, we will implement the Longini-Koopman 

model [7] to study the applications of these selection tools to 

stochastic epidemic models. 

We denote by B and Q respectively the probability of 

avoiding infection from the community and from the 

household. The community is composed of N households 

with four people. We have two outbreaks simulated with 

parameters B1, B2 and Q1, Q2. Given the epidemic data, we 

aim to choose one from the following two models: 

• Model M1: B1 = B2 = B, Q1 = Q2 = Q 

• Model M2: B1, B2, Q1, Q2 

Then the likelihood function of model M1 is 

𝐿 = 𝜋 𝐵 𝑀1 𝜋(𝑄|𝑀1)  𝑝𝑖4 𝐵, 𝑄 𝑛𝑖44
𝑖=0                (6) 

where π B M1 , π(Q|M1) are priors of B and Q, 𝑝𝑖4(𝐵, 𝑄) 
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is the probability of the household with i out of 4 infected 

and 𝑛𝑖4  is the number of such households in N=100 

households. 

TABLE I:  SIMULATION OF EPIDEMIC DATA USING DIFFERENT PARAMETER SET B AND Q, G1..G4 ARE GROUP OF SIMULATIONS AND NI ARE SIMULATED 

EPIDEMIC DATA.  

Group E1 E2 E3 E4 

G1 

Ni 

B:0.8, Q:0,8 

41,21,16,14,8 

B:0.45, Q: 

0.75 
4,9,16,30,41 

B:0.75, 

Q:0.45 
32,4,4,10,50 

B:0.75, Q:0.75 

31,17,18,17,16 

G2 

Ni 

B:0.8, Q:0.5 

41, 5,5,11,38 

B:0.45, 

Q:0.75 
4,9,16,30,41 

B:0.75, 

Q:0.45 
32,4,4,10,50 

B:0.75, Q:0.75 

31,18,17,18,16 

G3 

Ni 

B:0.5, Q:0.8 
6,13,21,31,19 

B:0.45, 
Q:0.75 

4,9,16,31,40 

B:0.75, 
Q:0.45 

32,4,4,10,50 

B:0.45, Q:0.45 
4,2,3,11,80 

G4 

Ni 

B:0.3, Q:0.8 

1,4,13,32,50 

B:0.45, 

Q:0.75 

4,9,16,30,41 

B:0.75, 

Q:0.45 

32,4,4,10,50 

B:0.45, Q:0.45 

4,2,3,11,80 

TABLE I: RESULTS OF AIC, DIC, BF WHERE G1…G4 REFERS TO GROUPS OF RESULTS, AND E:I-J REFERS TO SIMULATION DATA  EI AND EJ IN TABLE I.  

Group Outbreaks AIC-M1 AIC-M2 DIC-M1 DIC-M2 BF: M1/M2 

 
G1 

E:1-2 
E:1-3 

E:1-4 

640.5 
595.8 

616.6 

573.9 
540.6 

615.8 

640.5 
595.7 

616.6 

574.0 
540.5 

615.8 

3.36e−14  

1.39e−13  
9.4 

G2 E:1-2 

E:1-3 
E:1-4 

585.3 

502.0 
601.7 

536.3 

502.9 
578.1 

585.2 

501.9 
601.7 

536.2 

502.9 
578.0 

1.96e−10  
19.6 

9.6e−5 

G3 E:1-2 

E:1-3 
E:1-4 

577.8 

595.2 
508.6 

577.9 

544.6 
454.7 

577.8 

595.2 
508.6 

577.8 

544.6 
451.4 

8.2 

9.26e−11  

2.53e−12  

G4 E:1-2 

E:1-3 
E:1-4 

512.5 

531.3 
408.2 

511.4 

478.1 
388.1 

512.5 

531.3 
408.2 

511.1 

477.9 
384.8 

3.5 

1.73e−11  

4.82e−5 

 

From the table, we reach consistent conclusions in model 

support by the statistics AIC, DIC and BF. However, the 

significance of support is more apparent by using BF than 

AIC and DIC. 

1) Prior Sensitivity  

We test the sensitivity of the BF values to the priors. We 

will see that the conclusion of the model choice with the tool 

of BF will be affected by the choice of the priors. We recall 

the outbreak E1 and E4 in different groups in the simulation 

above to see the BF value under different priors. 

 
TABLE III: THE BF VALUES FOR THE IMPLEMENTATION RESULTS USING 

DIFFERENT PRIORS FOR B AND Q IN TWO DATA SETS, WHERE WE USE 

OUTBREAK DATA E1 AND E4 

Priors M1:B M1:Q M2:B M2:Q BF 

G1 B(4,1) B(3,1) B(4,1) B(3,1) 3.1 

G2 B(1,4) B(1,3) B(1,4) B(1,3) 14.7 

G3 B(10,40) B(10,30) B(10,40) B(10,30) 9.6e20 

G4 B(0.4,0.1) B(0.3,0.1) B(0.4,0.1) B(0.3,0.1) 73.3 

 

We can see that the level of support varies quite 

dramatically with different priors although all results 

conclude that model M1 fits the data better than model M2. 

In the following we use (B1=Q1=0.25, B2=Q2=0.3) , 

(B1=Q1=0.8, B2=Q2=0.75) to simulate two data sets. From 

the left figure, we can see that minimum logarithm of the BF 

values occurred in 0.28 with BF values 0.9363. It falls in the 

interval [0.24, 0.32] which is the curve of the logarithm of 

the BF intersecting the zero line. Intuitively, we believe the 

parameters are different if our knowledge assumes the true 

value is in the centre of the interval. 

 
Fig. 1. Two Figures show the BF values will be influenced by the priors set 

for the computations.  

 

In this case, support for M2 is within our expectation. We 

can see the minimum values falls nearly in the centre of the 

interval. A similar analysis applies to the right figure. 

B. Two-level Mixing  

Bayesian model choice methodology has been 

implemented to study the epidemic model with two level 

mixing. MCMC methods enable inference for such models, 

although the implementation details are usually non-

standard [6]. We consider the two-level mixing epidemic 

model where the individuals are of only one type. This is 

one of the simplest and most basic kinds of heterogeneity. 

Epidemics in population mix at two levels: global and local. 

For each infective, there are two types of contacts to connect 

to the other individual: a global probability PG , PL  for 
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infecting each individual in the population and a local 

probability  PL  for infecting each individual in his own 

household. An infective make contacts according to a 

Possion process during an infectious period TI, where TI are 

independently sampled from identical distribution I. 

1) Data and Likelihood  

The data are given as the form A = {a(n, i, f)} where a(n, 

i, f) denotes f frequencies of households which have initially 

n susceptible individuals and finally i of the n individuals 

get infected. The two basic parameters for this model are the 

infection rates 𝜆𝐺  and  𝜆𝐿 . By Bayes’ theorem, the posterior 

density of the parameters satisfies 

π λL,𝜆𝐺  A ∝ π A λL , λG ∙ π λL , λG                   (7) 

Employing the technique of likelihood augmentation [8], 

we can derive the likelihood for 𝜆𝐿  and 𝜆𝐺  . We consider 

two models M1 and M2. Model M1 is the full model, with 

infection rate parameter 𝜆𝐿  and 𝜆𝐺 . Model M2 is identical 

but with only one parameter λ = λL = 𝜆𝐺/𝑁 . Denote by 

P(M1) and P(M2) the two pre-assigned model priors. By 

employing the RJMCMC algorithm and counting the 

number of samples from each model, we have the following 

ratio 

𝑃(𝑀1|𝐴)

𝑃(𝑀2|𝐴)
=

𝑃(𝑀1)∙𝑃(𝐴|𝑀1)

𝑃(𝑀2)∙𝑃(𝐴|𝑀2)
                            (8) 

is nothing but B12, the Bayes factor of model M1 over 

model M2. Therefore the ratio computed in (8) via running 

RJMCMC is just the Bayes factor which evaluates the extent 

to which the given data support model M1 over model M2. 

2) Jump Proposal Mechanism  

We have the following jump proposal mechanism for the 

model switching in RJMCMC. If current model is M2, then 

we have the move  𝜆 𝐿 = 𝑘𝜆 + 𝜇, 𝜆 𝐺 = 𝑁 ∙ 𝜆  and 

μ~N(0, σ2). The Jacobian for the bijection mapping is N. 

Hence the jump probability is min{1, α} where 

α =
𝜋 𝜆𝐿 ,𝜆𝐺  𝜋 𝜆𝐿 ,𝜆𝐺  𝐴 𝑟1𝑁

𝜋 𝜆 𝜋 𝜆 ,𝐴 𝜋𝜇  𝜆 𝐿−𝑘∙𝜆 𝑟2
 .                        (9) 

 Similar numerics apply to the reverse move from M1 to 

M2. 

3) Numerical Results  

Denote by S={𝜆𝐿, 𝜆𝐺 , Z} the parameter sets and final size 

of each simulation. For presentation, one simulation 

S1={0.001, 0.35, 206} is given. The scale values K for S1 

are 35. The standard deviation σ is 0.01. 

 
TABLE IV: TOP TABLE REFERS TO SIMULATED SMALL HOUSEHOLD DATA 

AND BOTTOM TABLE REFERS TO THE BF VALUES GIVEN THE DATA SET 

WHICH ARE INFLUENCED BY PRIORS OF THE PARAMETERS  

House Size 1 2 3 4 5 Total 

Frequency 30 50 30 20 10 140 

Total 30 100 90 80 50 350 

 

K VL  VG  α β B12 

35 0.1 0.01 1.39 4.07 660/9340 

35 1.0 1.0 1.79 205.72 1879/8181 

35 10.0 1.0 1.39 407.25 5567/4433 

 

where VL , 𝑉𝐺  𝛼,𝛽 , are prior parameters. From the results 

listed above, we can see that the ratio derived from 

RJMCMC is heavily influenced by the priors given to the 

model parameters. 
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