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Application of Laplace Decomposition Method to Solve
Linear and Nonlinear Heat Equation

Sujit Handibag and B. D. Karande

Abstract—In this paper, we develop a method to obtain
approximate solution of nonlinear heat equation with the help
of Laplace Decomposition Method (LDM). The technique is
based on the application of Laplace transform to nonlinear
partial differential equation. The nonlinear term can easily be
handle with the help of Adomian polynomials. We illustrate
this technique with the help of three examples and results of
the present technique have closed arrestment with
approximate solutions obtained with the help of Adomian
Decomposition Method (ADM).

Index Terms—Approximate solution, Laplace decomposition
method, nonlinear partial differential equations. Adomian
decomposition method.

L. INTRODUCTION

The Adomian decomposition method (ADM) introduced
by Adomian possesses a great potential in solving different
kind of functional equation. The method is very well suited
to physical problems since it does not require unnecessary
liberalization, perturbation and other restrictive methods and
assumptions which may change the problem begin solved
sometime seriously.

The Laplace Decomposition Method (LDM) is a
numerical algorithm to solve nonlin- ear ordinary, partial
differential equation. Khuri used this method for the
approximate so- lution of a class of nonlinear ordinary
differential equation. Agadjanov applied this method for the
solution of Duffng equation. Elgazery exploit this method to
solve Falkner-Skan equation. This numerical technique
basically illustrates how the Laplace transform may be used
to approximate the solutions by manipulating the
decomposition method which was first introduction by
Adomian. The present paper aims at offering an alternative
method of solution to the existing ones concerning to the
linear and nonlinear heat equation. By using Laplace
transform base on decomposition method for solving heat
equation

U (X, ) = Uyy +€ U™

(1.1)

where m=1,2,3,.............. and ¢ is parameter, and the indices ¢
and x denote derivatives with respect to these variables.
Unless m=1, equation (1.1) is a nonlinear heat equation.
Construction of particular exact solution for nonlinear
equations of the form (1.1) is an important problem.
Especially, finding an exact solution that has a biological
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inter- pretation is of fundamental importance. In contrast to
simple diffusion (€= 0 case), when reaction kinetics and
diffusion are coupled, traveling waves of chemical
concentration exist, can effect a biological change, very fast
than straight diffusion processes governed by equa-tion like
(1.1) with €= 0. This coupling gives rise to reaction
diffusion equation of the form (1.1), where u is
concentration and the term €u,, represent the kinetics. For
example, it is know that for m=3,equation with cubic
nonlinear that admits soliton like solutions.

In the following section we apply the Laplace
decomposition method (LDM) to equation (1.1) to obtain
the particular exact solution of it in x as well as t direction
by taking

Laplace transform with respect to x and t respectively.

1L LAPLACE DECOMPOSITION METHOD

The aim of this section is to discuss the use of Laplace
transform algorithm for the nonlinear heat equations. We
consider the general form of homogeneous nonlinear heat
equations with initial conditions is given below

Lu(x,t) + Ru(x,t) + eu,, =0 (2.2)

u(x,0) = f(x),u(0,t) = g(t),ux(0,t) = h(t)
(2.3)

7] 22
where L_E'R_ﬁ

nonlinear operator € u,,. Taking the
Laplace transform on both sides of eq. (2.2) with respect
to t, we get

and MNu represent the general

Lt[Lu(x, )] + Lt[R u(x,t)] + Lt[Nu(x,t)] = 0

where L, represent the Laplace transform with respect to t.

1
su(x,s) —u(x,0) — ;Lt[uxx(x, t)+eu™ =0

u(x,s) = %f(x) + %Lt[uxx(x, t) + eu™]
(2.4)

Taking inverse Laplace transform on both sides of
equations (2.4) with respect to t, we get

w0 = FG) + I [FLlunCo +em| @)
In Laplace Decomposition Method we represent solution

in infinite series form. Therefore

suppose that

u(x, t) = Xnzo Un(x, t) (2.6)
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is a required solution of equation (2.2). A nonlinear term
occurs eq. (2.2), we can decompose it by using Adomian
polynomial, which is given by the formula

1 an

n= nl dy"[ (Zn N4 un)]y 0 n=0 (27)
Therefore

Nu(x,t) = X5-0Am (2.8)

where A, are Adomian polynomials of ug, uy, us...... U, n=

0. Which are calculated by using eq. (2.7) We obtain the
first few Adomian polynomials for as , Nu(x, {)=eu™ as

meum‘1

Ay = euy*, A= ,

A, = [(m — Dul2u? + 2uul 1

and so on. Putting equations (2.6) and (2.8) in equation (2.5),

we get
4L
D et = £ + LM Ll )t
n=0 o n=0
£ An]]
m=0
2.9)
Comparing the both sides of above equation, we get
up(x,t) = f(x),  ui(x, t)1
= 1" (< Lelttoee(x, )
+ Al]) , o Uz(xt)
1
=L (;Lt[ulxx + A1])
In general, the recursive relation is given by
uy(x,t) = f(x), un+1(9;: t)
= LZI (;Lt[unxx(xv t) + An]) ,
n=0 (2.10)

By using the above recursive relation, we can find the
few components of u(x, t); namely ug, uy, u2 u,, n= 0.
Substitute all these values in equation (2.6), we get the
solution of eq. (2.2) in series form in t direction. When we
take Laplace transform of (2.2) with respect to x , we get the
same solution in x direction. The recursive relation in x
direction is,

.......

uo(x,t) = g(t) + xh(t),

un+1 (x' t)

= 15 (S Ll 0 - 4,])

n=0 @.11)

To illustrate this method for coupled linear and nonlinear

heat equation we take two examples in the following section.

II1.

Example 1: If we take e=1 and m=1 in equation (1.1), we
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obtain the linear heat equation,
namely

U = Uy T U (3.12)

with initial condition u(x, 0) = cos(mx) and boundary
conditions u(0,f)=e =™t 4, (0, £)=0

Let us find the solution of equation (3.12) in t direction,
we use the recursive relation

(2. 10), we get
uy(x,t) = cos (x)
1
Lt [E L [—m? cos(mx)

1
uy (x, t) = L* [;Lt[qux + Ao

+ uyp)

=Lt [slz [(1 —7?)cos (nx)]] = t(1 — n?)cos (mx)
uy(x, t) = Lt ELt[ulxx + A1]] =

17 [FLl=t(1 = 7%) cos(mx) + £(1 = w2)cos (m0)|

2
% (1 — m®)cos (mx)
and so on. In this manner the rest of components of the
series (2.6) have been calculate using mathcad7. Putting
these individual terms in (2.6) one we get the exact solution
int
direction

u(x, t) = cos(mx) + (1 — n?)tcos(mx) + % a-

m2)t? cos(mx) + % (1 —a2)t3 cos(mx) + -+
= et cos(mx) (3.13)

which can be verified through substitution. Similarly, Let
us find the solution in x direction, we use the recursive
relation (2.11), we get

uo(x, t) — e(l—nz)t

1
uy (x, 1) = Ly* [S_zLx[uOC + Ao]]

= [S%Lx[(l _ 7.[2)6(1—112)t

2
_ e(1—n2)t]] — _n.ze(l—nz)t %
_ _®@ ey
2!

-1 1 4 (l—ﬂz)t !
uy(x, t) = Ly S_zLx[ult"'Al] =mn‘e ar
4
= —(T[X) e(l_nz)t

4!

and so on. In this manner the rest of the component of the
series (2.6) have been calculated.

From the decomposition series (2.6), we again obtain the
exact solution

(ﬂx)
(HX)
6l

ux, t) = et — T (a-n)e W” (1)

(1—7T2)t +
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u(x, t) = e cos(mx)

Example 2: Consider the nonlinear heat equation (2.2)
with €=-2 and m=3, that is,

Uy = Uy — 2U> (3.15)
. e .. 1+2x
with initial condition u(x, 0) = e o and the
.. 1 12t+1
boundary conditions u(0,t) = preil u,(0,t) = Gti?

For the solution of this equation in the t direction, we use
the recursive relation given by
(2.10), we get

1+2x
x?2+x+1

1
uy (x,t) = Lt [E Le[ugyx + Ao]]

ug(x, t) =

1
Lfl [;Lt[l] [qux + Zug]]
6(1+ 2x)t
(x2+x+1)2

1 36(1 + 2x)t
uy(x, t) = L [E Le[ugzx + Al]] = (2 +x+1)3

1 216(1 + 2x)t3
us(x,t) = Li* [g Le[ugex + Az]] BCETTG
and so on, in this manner the rest of the terms of
decomposition series have been calculated by using
Mathcad7. Substituting values of ug, uy, u,, u; in the
equation (2.6), we get the exact solution of equation (3.15)
in t direction.

1+ 2x 6(1+2x)t  36(1+2x)t
w6 TxXHx+1l (@ tx+1)? @ t+x+1)’
216(1 + 2x)t?
(3.16)

This result can be verified through substitution. On the
other hand, to obtain the solution in the x direction, we
proceed as before to determine the individual term of the
series (2.6)

1 12t +1

up(x,t) = u(0,t) + xuy(0,t) = e 1+x(6t+ 1?2
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1 1
Glay wGO=L3 [s_zLx[uOt + Ao]] = L' [S_ZLx[um - ZuS]]

_ 5 (18t+2) 3 (=72t2 +1) 4 (180t2+30t+1)
7 (et+1)3 (6t+1)* (6t+1)8
5 (432t3-108t2-36t—2) .
s T

and so on. In this manner the rest terms of the
decomposition series (2.6) have been calculated.
Substituting values of ug, uy, Uy, us...... in the equation
(2.6), we get again exact solution of equation (3.15) in x
direction.
1 12t +1 , (18t +2)
+x —-Xx
6t+1 (6t + 1)? (6t +1)3
, (=72t7 + 1)
(6t + 1)4
4 (180t2 + 30t + 1)
(6t +1)5
s (432t3 — 108t2 — 36t — 2)
(6t + 1)°

u(x,t) =

+ ..

This result can be verified through substitution.

Iv.

In this article, Laplace decomposition method is applied
to solve linear and nonlinear heat equation in t direction as
well as x direction by taking the Laplace transform wit
respect to t as well as x respectively. In both directions we
get the same exact or approxi- mate solution. The results of
two examples are comparing with ADM. The result of these
two examples tell us that both methods can be used
alternatively for the equation (1.1).

CONCLUSION
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