
 

Abstract—This paper deals with a high-order accurate Nodal 

Discontinuous Galerkin (DG) method for the numerical 

solution of the inviscid Burgers equation, which is a simplest 

case of nonlinear, hyperbolic partial differential equation. This 

method combines mainly two key ideas which are based on the 

finite volume and finite element methods. The physics of wave 

propagation being accounted for by means of Riemann 

problems and accuracy is obtained by means of high-order 

polynomial approximations within elements. In Nodal DG 

method a finite element space discretization is obtained by 

element wise discontinuous approximations. Whereas 

low-storage, high order accurate, explicit Runge-Kutta 

(LSERK) method is used for temporal discretization. The 

resulting RKDG methods are stable, high-order accurate and 

highly parallelizable schemes that can easily handle 

complicated geometries and boundary conditions. Exponential 

filter is used to remove spurious oscillations near the shock 

waves. The    and     errorsin the solution show that the 

scheme is accurate and effective. Hence, the method is well 

suited to achieve high order accurate solution for the hyperbolic 

partial differential equations.  

 
Index Terms—Nodal Discontinuous galerkin method, 

burgers equation, exponential filter, hyperbolic PDE.  

 

I. INTRODUCTION 

The Discontinuous Galerkin Method (DGM) was first 

introduced by Reed and Hill [1] as a technique to solve 

neutron transport problems. In a series of papers by Cockburn, 

Shu et al. [2-5], the RKDG method has been developed for 

solving nonlinear hyperbolic conservation laws and related 

equations, in which DG is used for spatial discretization with 

flux values at cell edges computed by either Riemann 

solversor monotone flux functions, the total variation 

bounded (TVB) limiter [6-7] is employedto eliminate 

spurious oscillations and the total variation diminishing 

(TVD) Runge-Kutta(RK) method is used for the temporal 

discretization to ensure the stability of the numericalapproach 

while simplifying the implementation.  

The Discontinuous Galerkin Method (DGM) has recently 

become more popular for the solution of systems of 

conservation laws to arbitrary order of accuracy [8], [9]. An 

intelligent combination of the finite element and finite 

volume method, utilizing a space of basis and test function 

that mimics thefinite element method but satisfying the 
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equation in a sense closer to the finite volume method, 

appears to offer many of the desired properties. This 

combination is exactly what leads to Discontinuous Galerkin 

Finite Element Method (DG-FEM) [10]. The physics of wave 

propagation is, however, accounted for by solving the 

Riemann problems that arise from the discontinuous 

representation of the solution at element interfaces [11], [12], 

[13]. 

High order accurate Low-Storage Explicit Runge-Kutta 

(LSERK) method is used for temporaldiscretization.The 

resultingRKDG methods are stable, high-order accurate and 

highly parallelizable schemesthat can easily handle 

complicated geometries and boundary conditions [14]. Many 

of the equations of mechanics are hyperbolic, and so the 

study of hyperbolic equations is of substantial contemporary 

interest. 

 

II. NODAL DISCONTINUOUS GALERKIN FORMULATION 

A. Spatial Discretization 

The conservation law is discretized in space by using 

Discontinuous Galerkin approach. Here we consider problem 

posed on the physical domain    with boundary    and 

assume that this domain is well approximated by the 

computational domain   . This is space filling triangulation 

composed of a collection of k geometry–conforming 

non-overlapping elements  . The model equation is 

 

  

  
  
     

  
                                                    

 

where the flux is given as       
  

 
  .It is subject to the 

initial conditions and boundary conditions of the form: 

 

                                               

 

                     

 

We approximate   by K non-overlapping elements, 

      
    

       as illustrated in Fig. 1. On each of these 

elements we express the local solution as a polynomial of 

order        
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Fig. 1. Computational domain. 

In Eq. (2) we have applied nodal approach where we 

introduce         local grid points,   
      and 

express the polynomial through the associated interpolating 

Lagrange Polynomial    
    . The global solution is assumed 

to be approximated by the piecewise N-th order polynomial 

approximation          defined as the direct sum of the K 

local polynomial solution   
       as 

 

               
 
 

   
  
       

 

The inner product of residual and basis must be zero 

 

        
    

  
  
             

 

Introducing affine mapping 

 

                
       

 
  
       

 
        

 

 he reference variable             
Using Gauss’ theorem to obtain local statement  

 

 
   

 

  
  
    

 
   

 

    
          

   
  
  

    

           

 
The main purpose of the right hand side is to connect the 

elements. Further, considering the local solution as 

approximation to the global solution yields the local 

semi-discrete scheme as  

 

  
   

 

  
        

        
   
  

  

    

                

 
where  and      are mass and stiffness matrices of element 

krespectively and computed as under 

 

   
      

    
  

  
    

 
    

  
     

       

   
     

 

  
   

   

  
       

 

Finally, Eq. (5) can be written in the matrix form as 

The numerical flux    is calculated by using monotone 

Lax-Friedrich scheme. Here, the concept of approximate 

Riemann solver or numerical flux is incorporated into the DG 

method. 

  

 
      

 

  

 
 
 
 
   
 

   
 

 
   
  
 
 
 

       
 

 
 
 
 
   
 

   
 

 
   
  
 
 
 

    
       

 
 
 
 
 
 
 
 
  
 
  
 
 
 
 

   
     

 
 
 
 
 
 
 
 
   
  
 
 
 
 

                 

B. Time Discretization 

Subsequent to space discretization, the resulting system of 

ordinary differential equations,
   

  
        ), is discretized 

by using explicit high-order accurate Low-Storage Explicit 

Runge–Kutta (LSERK) method: 

 

1) Set         

 

2) Compute the intermediate functions: 

 

            
        

             
              

               
   

   

 

3) Set   
         

 

where           are the coefficients needed in the LSERK. 

 

III. FILTERING 

In order to curb spurious oscillations in vicinity of shock 

wave an exponential filter is used. Filter matrix F defined as 

 

               

 

where F is filter matrix and Λ is the diagonal matrix having 

entries 

 

       
   

 
  ,      i = 1, . . . ,Np. 

 

     

  

                                         

        
    
    

 
 

             
  

 

where    
  

 
 , Nc represents a cutoff below which the low 

modes are left untouched.  

 

IV. NUMERICAL RESULTS 

Similar to other Finite Element Methods, complex 

geometries and boundary conditions can easily be handled 

with nodal DG method. High-order accuracy can also be 

attained. The results obtained are depicted in the following 

Figs. 
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Fig. 2. Exact solution. 

 
Fig. 3. Numerical solution before filtering. 

 
Fig. 4. Numerical solution after filtering. 

  

Fig. 5. Comparison of computed result with exact solution. 

The    and   error norms are used to measure the 

accuracy of scheme as shown in Table I. 

 

V. CONCLUSION 

The numerical solution of inviscid Burgers Equation, 

obtained by using Nodal DGM is highly accurate and nearly 

the same as exact solution as shown in Fig. 5. In order to 

remove wiggles as shown in Fig. 3, a filter was constructed 

and added in the solution, due to which the wiggles near the 

shock wave were considerably removed as shown in Fig.4 

and Fig. 5. From table I, it can be observed that with 

decreasing the step size, the errors in the solution also 

decrease.  However, different types of filters and limiters can 

be constructed to further smoothen the solution near the 

shockwave 

TABLE I:     AND    ERRORS AT DIFFERENT STEP SIZES AND POLYNOMIAL 

ORDER. 

h 

      

            

20 2.33E-01 1.30E-01 

 

1.47E-01 

 

 

9.86E-02 

 

30 1.66E-01 8.23E-02 

 

1.20E-01 

 

 

6.77E-02 

 

40 1.27E-01 6.89E-02 

 

1.06E-01 

 

 

5.91E-02 

 

50 1.08E-01 6.14E-02 

 

9.27E-02 

 

 

4.86E-02 

 

REFERENCES 

[1] Reed and T. Hill. “Triangular mesh methods for the neutron transport 

equation,” Tech. report la-ur-73-479, Los Alamos Scientific Laboratory, 

1973. 

[2] B. Cockburn and C.-W. Shu, “The TVB Runge-Kutta local projection 

discontinuous Galerkin finite element method for conservation laws V: 

multidimensional systems,” J. Comput. Phys., vol. 141, pp. 199–224, 

1998. 

[3] B. Cockburn, S. Hou, and C.-W. Shu, “The TVB Runge-Kutta local 

projection discontinuous Galerkin finite element method for 

conservation laws IV: the multidimensional case,” Math. Comp., vol. 

54, pp. 545–581, 1990. 

[4] B. Cockburn, S.-Y. Lin, and C.-W. Shu, “TVB Runge-Kutta local 

projection discontinuous Galerkin finite element method for 

conservation laws III: one dimensional systems,” J. Comput. Phys., vol. 

52, pp. 411–435, 1989.  

[5] B. Cockburn and C.-W. Shu, “TVB Runge-Kutta local projection 

discontinuous Galerkin finite element method for conservation laws II: 

general framework,” Math. Comp., vol. 52, pp. 411–435, 1989. 

[6] C.-W. Shu and S. Osher, “Efficient implementation of essentially 

non-oscillatory shock capturing schemes II,” J. Comput. Phys., vol. 83, 

pp. 32–78, 1989. 

[7] P. Woodward and P. Colella, “Numerical simulation of 

two-dimensional fluid flows with strong shocks,” J. Comput. Phys., vol. 

54, pp. 115, 1984. 

[8] H. Luo, J. D. Baum, and R. Lohner, “Discontinuous galerkin method 

based on a taylor basis for the compressible flows on arbitrary grids,” 

Journal of Computational Physics, 2008. 

[9] H. Luo, J. D. Baum, and R. L¨ohner, “On the computation of 

steady-state compressible flows using a discontinuous galerkin 

method,” International Journal for Numerical Methods in Engineering, 

vol. 73, no. 5, pp. 597-623, 2008. 

[10] J. S. Hesthaven and T. Warburton, “Nodal discontinuous galerkin 

methods- algorithms, analysis, and applications,” 2008. 

[11] F. Bassi and S. Rebay, “A high-order accurate discontinuous finite 

element method for the numerical solution of the compressible 

navier-stokes equations,” Journal of Computational Physics, vol. 131, 

pp. 267-279, 1997. 

[12] H. Luo, J. D. Baum, and R. L¨ohner, “A p-multigrid discontinuous 

galerkin method for the euler equations on unstructured grids,” Journal 

of Computational Physics, vol. 211, no. 2, pp. 767-783, 2006. 

[13] H. Luo, J. D. Baum, and R. L¨ohner, “Fast, p-multigrid Discontinuous 

Galerkin Method for compressible flows at All Speeds,” AIAA Journal, 

vol. 46, no. 3, pp. 635-652, March 2008. 

[14] B. Cockburn and C.-W. Shu, “Runge–kutta discontinuous galerkin 

methods for convection-dominated problems,” Journal of Scientific 

Computing, vol. 16, no. 3, September 2001. 

 

International Journal of Applied Physics and Mathematics, Vol. 2, No. 5, September 2012

364


