
  

 

Abstract—Robu 1 st design experiments with single array 

were applied for the first time to optimization of rubber 

examination glove production in Malaysia. Seven controllable 

factors and one noise factor were combined in a single 

experimental setup at fixed levels also called a combined array 

or a single array. Two levels saturated fractional factorial 

designed was employed to elucidate the controllable factors that 

significantly affect the examination glove. The inclusion of the 

noise factor (relative humidity) allows a systematic study of the 

effect of process variation on product and process quality that 

can be expected under processing condition. The modeling was 

performed on the mean and standard deviation separately for 

the quality characteristics of interest (pinholes). The standard 

deviation model is used to investigate the possibility of reducing 

the process variations induced by uncontrolled factors while 

keeping the mean on target. In this paper, we demonstrate how 

response modeling derived from robust design experiments 

were employed to identify setting of the controllable factors so 

that quality characteristics are least sensitive to variation of 

noise factor. 

 
Index Terms—Design of experiments, robust design, noise 

factor, multiple regression. 

 

I. INTRODUCTION 

Scientific experimentation in industrial quality 

improvement has recently received much attention in 

Malaysia. The use of robust design experiments has proven 

to be a powerful and cost effective strategy for building 

quality into the design of products and processes. This would 

be necessary to ensure longer term survival of the industry, 

especially in the event of stiff competition globally. Hence 

manufacturers would have to employ more specialized 

techniques to make further gains. In our case study seven 

controllable factors and one noise factor were combined in a 

single experimental setup, also called a combined array or a 

single array. The results and analysis of multiple regression 

models derived from the robust designed experiments 

including the noise factor are discussed. The modeling was 

performed on the mean and standard deviation separately for 

the quality characteristics of interest. The standard deviation 

model is used to investigate the possibility of reducing the 

process variations induced by uncontrolled factors not 

included in the experiments as noise factors (residual  

variation). In this paper, we demonstrate how response 
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modeling derived from robust design experiments were 

employed to identify setting of the design (controllable) 

factors so that quality characteristics are least sensitive to 

variation of noise factor. The knowledge gathered from the 

fitted models to the mean and standard deviation of the 

quality characteristics of concerned is very useful for 

economical and critical decision making. 
 

II. STRATEGY AND PLANNING 

A. Robust Designed Experiments 

The strategy of robust process design is first, settings of 

controllable factors (process parameters), which produced 

desired quality characteristics with minimum variation. Then, 

a means of adjusting the average as necessary is developed. 

Robust design relies heavily on experimentation to assess the 

effects of different factors on product and process 

performance. Steinberg and Bursztyn [1] reported that robust 

design experiments are effective when it is possible to 

incorporate some variation directly in the experiments by 

mean of noise factors. When a noise factor is introduced in a 

robust experiment, variation is built directly into the results 

which enable more efficient modelling of the process 

variation. Seven controllable factors and one noise factor, 

two-level saturated fractional factorial 28-4 or L16 array 

were used, and their factor levels were fixed. Curing 

temperature profile, latex temperature, formers’ temperature, 

percentage of calcium nitrate, percentage of calcium 

carbonate, oven temperature after coagulation dip and latex 

pH were identified as important controllable factors. The 

noise factor and the controllable factors were combined in a 

single factorial design array. In our case study, the noise 

factor that is the relative humidity was purposely included in 

the experiment in order to determine the controllable factor 

levels that are least sensitive to noise using average response. 

By reducing process variability we can better control process 

and can reduce the cost associated with development, 

manufacture and use. In this study, replication for each 

combination of each levels was made twice, so that not only 

process variation is included but also the variation due to 

uncontrollable sources which vary over longer time periods 

as well as variation introduced by resetting the factors. Also 

the effect of factors on variability as well as on average value 

could be assessed. The experimental design employed above 

has the property of being orthogonal. 

A resolution IV of fractional factorial was also considered 

in the experimental plan so that all main effects are clear of 

two-factor interactions. The order in which these 16 trials 

runs were performed was randomized completely so as to 

reduce the effects of factors which were not controlled in the 

experimentation. 
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B. Model Building Based on Experimental Results 

All Two model strategies (location and dispersion 

modelling) and response modelling were employed. In the 

investigation, the pinhole was regressed. We want to choose 

a subset of explanatory variables that represent the 

phenomena under study. Separate analyses of the averages 

and the standard deviations were performed.  The standard 

deviation model is used to investigate the possibility of 

reducing the process variations induced by uncontrollable 

factors not included in the experiment as noise factor 

(residual variation). A model containing all the main effects 

and two-factor interactions was fitted to the data. The 

forward selection, backward elimination and stepwise 

techniques were used to select a subset of explanatory 

variables. The variables were selected based on the 

significance of the t-ratio and by considering the R2 and R2 

(adjusted) values that resulted from the inclusion of those 

variables. Another criterion for assessing the best model is 

the residual mean square also termed as error mean square 

MSE or the estimated standard deviationMSE. The smaller 

its value, the better the model fit. 

The forward selection regression procedure builds a model 

by adding one effect (factor) at a time as long as the reduction 

in residual sum of square is substantial. The backward 

elimination regression procedure includes all the explanatory 

variables initially, but eliminates the variables one at a time 

starting with those having the smallest t-ratios. The step wise 

procedure uses either forward or backward selection to 

control the entry of variables into the model. This procedure 

is helpful in model building when there is large number of 

possible independent factors and the analyst is unsure which 

to include. Fitting the noise factor in a model with control 

factors has the advantage of providing a better understanding 

of the process. 

C. Modelling Location and Dispersion Effects on 

Pinholes 

The statistical software package Minitab was used to carry 

out the regression modelling [2]. 

Pinholes counts often follow a Poisson distribution. This is 

true in our case. This implies that groups with higher 

averages counts also have higher variability, because the 

mean and the variance in Poisson distribution are the same. 

This violates two of our assumptions: normality and constant 

variance. It can be shown that the square root of Poisson 

random variables does stabilise the variance and also provide 

a variable that has an approximate Normal distribution. A 

multiple regression was performed on the transformed data, 

that is Y= No. of pinholes per 100. 

 

III. RESULTS AND DISCUSSION 

Analysis of variance (ANOVA) of the linear multiple 

regression fit is presented in Table II. The overall regression 

model obtained for pinholes is statistically significant with 

p-value (0.002). The estimated standard deviation of the 

errors about the regression line is 0.0625 with R2 and R2 

(adjusted) 70.3% and 55.5% respectively. This implies that 

the model could probably reduce the variability in the 

pinholes by 55.5% respectively. With a model for pinholes 

now developed, we need to check for any inadequacies via a 

study of the residuals. The plot of the standardised residuals 

against fitted value indicates that the residuals are centred 

about the dashed line as given in Fig. 2 and there does not 

appear to be pattern. Fig. 1 shows the normal scores plot of 

the residuals of the model fitted. It seems to have a quite a 

good linear fit except for the two end points. On the whole, 

these plots show no obvious structural pattern and thus we 

may conclude that our model has no apparent inadequacies. 

These plots show that the underlying model assumptions are 

valid and that any conclusions drawn are appropriate. 

The best equation for the mean square root pinholes was: Y 

= 0.172+0.034A+0.0374B-0.0191D - 0.0524G + 0.0237AB + 

0.0167AE + 0.0315BE-0.0220BF-0.0160CD. 

Table I shows that the important variables that affect the 

change in pinholes are factors G (oven temperature before 

latex dip, B(temperature of latex in dip tank) and A (Curing 

temperature profile). These variables have high t-ratio -4.29, 

3.13 and 2.51 respectively. The negative sign of the 

coefficient for factor G implies that the pinholes are reduced 

when G is set high. This equation also implies that lowering 

the curing oven profile and latex temperature will tend to give 

less pinhole. On the other hand increasing oven temperature 

after coagulation dip will also give less pinhole. The 

interaction between D (%calcium nitrate) and F (calcium 

carbonate) was also found marginally significant (p<0.063). 

Since none of the main factor effect for this interaction is 

significant, this suggests that the interaction is probably a 

random variation. Based on the inheritance principle when a 

two factor interaction is significant, at least one of the 

corresponding factor main effects is also significant [3]. It is 

also noted that there was an interaction between the noise and 

the controllable factor, that is BE interaction as depicted in 

Fig. 3. The discovery of this interaction is very important 

information because we can understand the process better. 

Examination of Table III showed that interaction at B1E2 

yields less pinholes. This implies that factor E has significant 

impact and contributes to variability in the process at some 

settings of the controllable factors. Thus, it is important to 

find setting of the controllable factors at which the effect of 

factor E is small. It appears that there is less percentage of 

pinholes when the latex temperature (B) is set low and 

humidity (E) is set high as given in Fig. 3. The goal here is to 

minimise the percentage of pinholes and minimise variability. 

However, humidity is a noise factor which cannot be 

controlled. 

TABLE I: MULTIPLE REGRESSION RESULTS FOR PINHOLES. 

Predictor Coefficient Standard 

Deviation 

t-ratio p-value 

constant 
0.1716 0.0731 14.16 0.000 

A 0.0304 0.0231 2.51 0.002 

B 0.0374 0.0231 3.13 0.006 

D -0.0191 0.0231 -1.58 0.133 

G -0.0524 0.0231 -4.29 0.000 

AB(=DF) 0.0237 0.0231 1.99 0.063 

AE 0.0168 0.0231 1.39 0.180 

BE 0.0315 0.0231 2.58 0.019 

BF -0.0221 0.0231 -1.82 0.086 
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TABLE II: ANALYSIS OF VARIANCE FOR PINHOLES REGRESSION MODEL. 

 

TABLE III: MAIN EFFECTS FACTORS B AND G ON PINHOLES. 

Levels Factors 

 B G 

Average Response at High 

Level (2) 

0.214 0.1301 

Average Response at Low 

Level (1) 

0.1434 0.2273 

Main Effect 0.0706 0.0972 

TABLE IV: INTERACTION EFFECT OF BE ON PINHOLES. 

B1 (Low) B2(High)  

0.187 0.187 E1( Low) 

0.1 0.241 E2 (High ) 

 

2

1

0

-1

-2

Fitted Squareroot Pinholes (%)

S
ta

n
d

a
r
d
iz

e
d
 R

e
s
id

u
a

l

 
Fig. 1. Residuals versus fitted responses. 
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Fig. 2. Normal probability plot. 

+_

0.22

0.20

0.18

0.16

0.14

0.12

0.10

%
 P

in
h

o
le

s

_

+

B

Interaction Effect for squareroot Pinholes

Noise factor

 
Fig. 3. Interaction effects for pinholes. 

We can see from Fig. 3 that when humidity is low, setting 

factor B either at low or high would yield similar percentage 

of pinholes. This indicates that factor B has almost no effect 

on average response when humidity is at low. But when 

humidity moves from low to high, we observed that B at low 

temperature percentage of pinholes drops from 0.187 to 

0.099. Thus, there is a decrease of pinholes by 47.05% but 

variation in the percentage of pinholes is increased. This is 

shown in Fig. 3 where B1 has bigger slope as compared to B2. 

On the other hand, if Factor B2 is set at the high level, the 

percentage of holes increases by 28.87 % but variability is 

small. There is conflict between level that minimize average 

pinholes and level that minimize variability. Since the 

percentage of pinholes is significantly reduced if we set at B1, 

it would be probably be best to set B low. Thus by examining 

interaction effects we discovered that information about the 

BE interaction in this case is more useful than knowledge of 

the main effects on their own. Factor B affects both the 

average and standard deviation of the response. Even though 

it is important to reduce variability, the potential reduction in 

pinholes in the variability is small (28.9%) compared to the 

potential reduction in the number of pinholes, which is 

greater (47.10%). Thus we have to trade off variability in this 

case. 

 

IV. CONCLUSION 

This study has attempted to improve the current 

performance of a rubber examination glove manufacturing 

process. The inclusion of noise factor in this study has 

provided crucial information and enhanced our 

understanding for choosing the appropriate process factors 

and their levels in rubber glove manufacturing. It shows that 

humidity could potentially influence the mean response of 

pinholes. The results of the study have shown that the 

variability in the responses could be minimised and there is 

significant potential for improvement. 

This study also suggests that humidity influences pinholes. 

The discovery of interactions between controllable factors 

and humidity, suggest that the process can be made robust to 

changes in humidity by adjusting the latex temperature. The 

result of this finding is obviously very valuable and should be 

of commercial benefit to the company. 

The results also suggest that some of the models developed 

from this study could potentially be used to facilitate 

changing manufacturing parameters to cope with changing 

customers’ specifications 
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