A Generalization of the Notion of Connes-Amenability

Amin Mahmoodi

Abstract—In this paper, we show that the approximate Connes-amenability and approximate amenability of weighted group algebra $\ell^1(G, \omega)$ are the same, where G is a discrete group and ω is a weight function on G.

Index Terms—Connes-amenability, approximate amenability, beurling algebras.

I. INTRODUCTION

The notion of approximate amenability was introduced by F. Ghahramani and R. J. Loy in [3]. The class of approximately amenable Banach algebras is clearly larger than that for the classical amenable Banach algebras introduced by B. E. Johnson in [5], (see [3] and [4]).

A weaker notion of amenability that is called Connes-amenability, which has a natural generalization to the case of dual Banach algebras, was introduced by V. Runde in [6,7].

With above notions in hands, it is normal to think of the concept of approximate Connes-amenability for dual Banach algebras, [2]. There are examples to show that this new notion is not coincide with the mentioned concepts earlier, [2, Example 2.1].

In this short note, we investigate the notion of approximate Connes-amenability for weighted group algebras. We include only the proof of our main Theorem.

Our work is based on [1]. For a discrete group *G* we show that $\ell^1(G, \omega)$ is approximately Connes- amenable if and only if it is approximately amenable.

A Banach A -bimodule E is called *dual* if there is a closed submodule E_* of E^* such that $E = (E_*)^*$. The dual Banach A -bimodule E is called *normal* if the module actions of A on E are ω^* -continuous. A Banach algebra A is dual if it is dual as a Banach A -bimodule. A dual Banach algebra A is *Connes-amenable* if for every normal, dual Banach A -bimodule E, all bounded, ω^* -continuous derivations $D: A \to E$ are inner. Let $A = (A_*)^*$ be a dual Banach algebra and let $\pi: A \otimes A \to A$ be the diagonal operator induced by $a \otimes b \to ab$. Let E be a Banach A -bimodule. We write $\sigma wc(E)$ for the set of all elements $x \in E$ such that the maps $a \mapsto a.x$ and $a \mapsto x.a$ from A into E are ω^* -weak continuous. The space $\sigma wc(E)$ is a closed submodule of E .It is shown that $\pi^* A_* \subseteq \sigma wc (A \otimes A)^*$, [8, Corollary 4.6]. Taking adjoint, we can extend π to an A-bimodule homomorphism $\pi_{\sigma vc}$ from $\sigma wc ((A \otimes A)^*)^*$ to A. A derivation $D: A \to E$ is approximately inner if there exists a net $(x_\alpha)_\alpha \subseteq E$, not necessary bounded, such that for every $a \in A$, $Da = \lim_{\alpha} a.x_\alpha - x_\alpha.a$, the limit being in norm. A dual Banach algebra A is approximately Connes- amenable if for every normal, dual Banach A-bimodule E, every ω^* -continuous derivation $D: A \to E$, is approximately inner.

II. THE MAIN RESULT

For a Banach algebra A, we define the bilinear maps $A^{**} \times A^* \to A^*$ and $A^* \times A^{**} \to A^*$ by

$$\langle a, \Phi. f \rangle = \langle f.a, \Phi \rangle, \langle a, f.\Phi \rangle = \langle a.f, \Phi \rangle \quad (a \in A, f \in A^*, \Phi \in A^{**}).$$

Then we have two algebra products on A^{**} , called the *first* and *second* Arens product respectively. When they are equal, we say that A is Arens regular. In this case A^{**} is a dual Banach algebra with predual A^{*} .

Let G be a group. A function $\omega: G \to (0, \infty)$ is called a weight if $\omega(st) \le \omega(s)\omega(t)$, for each $s, t \in G$. Without loss of generality, we may put $\omega(e) = 1$, where e is the identity of G.

For a weight ω on a group G, the Banach space $\ell^1(G,\omega)$ is called a Beurling algebra. Following [1], we consider $\ell^1(G,\omega)$ as the Banach space $\ell^1(G)$ with the product $\delta_g *_{\omega} \delta_h = \delta_{gh} \Omega(g,h)$ where $\Omega(g,h) = \omega(gh)/\omega(g)\omega(h)$, for $g,h \in G$, and extend $*_{\omega}$ to $\ell^1(G)$ by linearity and continuity.

For a group G, the spaces $c_0(G)$ and $\ell^{\infty}(G)$ are known. We write $(u_s)_{s\in G}$ for the standard unit vector basis of $c_0(G)$, so that $\langle u_s, \delta_t \rangle = \delta_{s,t}$, the *Kronecker delta*, for $s, t \in G$. It is known that $\ell^1(G, \omega)$ is a dual Banach algebra with predual $c_0(G)$.

Theorem 1.1. Let G be discrete group, let ω be a weight on G and let $A = \ell^1(G, \omega)$. Then the following are equivalent:

Manuscript received May 10, 2012; revised June 12, 2012

A. Mahmoodi is with the Department of Mathematics, Central Tehran Branch, Islamic Azad University, Tehran, Iran (e-mail: lamis_jomah@yahoo.com).

(i)A is approximately amenable.

(*ii*) There is a net
$$(M_{\alpha})_{\alpha} \subseteq (A \otimes A)^{**} = \ell^{\infty} (G \times G)^{*}$$
 such that

$$\left\langle \left(f\left(hk,g\right)\Omega\left(h,k\right)-f\left(h,kg\right)\Omega\left(k,g\right)\right)_{(g,h)\in G\times G},M_{\alpha}\right\rangle \rightarrow 0,$$
 (1)

for each $k \in G$, uniformly for all $f \in ball^{\infty}(G \times G)$, and

$$\left\langle \left(f_{gh} \Omega(g,h)_{(g,h) \in G \circ G}, M_{\alpha} \right) \right\rangle \to f_{e},$$

$$\left(f = \left(f_{g} \right)_{g \in G} \in \ell^{\infty}(G) \right). \left\langle \left(f(hk,g) \Omega(h,k) - f(h,kg) \Omega(k,g) \right)_{(g,h) \in G \circ G}, M_{\alpha} \right\rangle \to 0,$$

(*iii*) There is a net $(M_{\alpha})_{\alpha} \subseteq (A \otimes A)^{**} = \ell^{\infty} (G \times G)^{*}$ such that

$$\left\langle \left(f\left(hk,g\right)\Omega\left(h,k\right)-f\left(h,kg\right)\Omega\left(k,g\right)\right)_{(g,h)\in G\times G},M_{\alpha}\right\rangle \rightarrow 0,$$
⁽¹⁾

for each $k \in G$, uniformly for all $f \in ball \ell^{\infty}(G \times G)$, and

$$\left\langle \left(f_{gh} \Omega(g,h)_{(g,h)\in G\times G}, M_{\alpha}^{'} \right) \right\rangle = f_{e}, \quad \left(f = \left(f_{g} \right)_{g\in G} \in \ell^{\infty}(G) \right).$$
(2)

Proposition 1.2. Let *G* be a discrete group, let ω be a weight on *G* and let $A = \ell^1(G, \omega)$. Then the following are equivalent:

(*i*) A is approximately Connes-amenable, with respect to the predual $c_0(G)$.

(*ii*) There is a net $(M_{\alpha})_{\alpha} \subseteq (A \otimes A)^{**} = \ell^{\infty} (G \times G)^{*}$ such that

$$J_{h}(f) = \left(f_{hg} \ \Omega(h,g) \ \omega(h) \ \Omega(g^{-1},h^{-1}) \ \omega(h^{-1})\right)_{g \in G}, \quad \left(f = \left(f_{g}\right)_{g} \in \ell^{\infty}(G)\right)$$

It is clear that $||J_h(f)|| \le ||f||$, so that J_h is bounded. Theorem 1.3. Let G be a discrete group, let ω be a weight on G and let $A = \ell^1(G, \omega)$. Consider the following:

(i)A is approximately Connes-amenable, with respect to the predual $c_0(G)$.

(ii) A is approximately amenable.

(*iii*) There is a net $(N_{\alpha})_{\alpha} \subseteq \ell^{\infty}(G)^*$ such that

$$\left\langle \left(\Omega\left(g,g^{-1}\right) \right)_{g}, N_{\alpha} \right\rangle \rightarrow 1,$$
 (1)

and

$$J_{k}^{*}(N_{\alpha}) - N_{\alpha} \to 0, \qquad (k \in G).$$
⁽²⁾

(iv) There is a net $(N_{\alpha})_{\alpha} \subseteq \ell^{\infty}(G)^*$ such that

$$\left\langle \left(\Omega\left(g,g^{-1}\right) \right)_{g}, N_{\alpha}^{'} \right\rangle = 1,$$
 (1)

and

$$\left\langle \left(f\left(hk,g\right)\Omega\left(h,k\right)-f\left(h,kg\right)\Omega\left(k,g\right)\right)_{(g,h)\in G\times G},M_{\alpha}\right\rangle \rightarrow0,$$
 (1)

for each $k \in G$, uniformly for all $f \in ball \ell^{\infty}(G \times G)$, which are such that the maps $T \in L(A, A^*)$ defined by $\langle \delta_h, T(\delta_g) \rangle = f(g, h)$ for $g, h \in G$, satisfy the conclusions of Theorem 1.1, and

$$\left\langle \left(f_{gh} \Omega(g,h)_{(g,h) \in G \times G}, M_{\alpha} \right) \right\rangle \rightarrow \left\langle f, e \right\rangle,$$
 (2)

uniformly for all $f \in ball c_0(G)$.

(*iii*) There is a net $(M_{\alpha})_{\alpha} \subseteq (A \otimes A)^{**} = \ell^{\infty} (G \times G)^{*}$ such that

$$\left\langle \left(f\left(hk,g\right)\Omega\left(h,k\right)-f\left(h,kg\right)\Omega\left(k,g\right)\right)_{(g,h)\in G\times G},M_{\alpha}\right\rangle \rightarrow 0,$$
 (1)

for each $k \in G$, uniformly for all $f \in ball \ell^{\infty}(G \times G)$, which are such that the maps $T \in L(A, A^*)$ defined by $\langle \delta_h, T(\delta_g) \rangle = f(g, h)$ for $g, h \in G$, satisfy the conclusions of Theorem 1.1, and

$$\left\langle \left(f_{gh} \Omega(g,h)_{(g,h) \in G \times G}, M_{\alpha}^{'} \right) \right\rangle \rightarrow \left\langle f, e \right\rangle, \quad \left(f = \left(f_{g} \right)_{g \in G} \in c_{0}(G) \right). \tag{2}$$

Let G be a discrete group and let $h \in G$. Following Daws as in [1], we define $J_h : \ell^{\infty}(G) \to \ell^{\infty}(G)$ by

$$J_{k}^{*}\left(N_{\alpha}^{'}\right) - N_{\alpha}^{'} \rightarrow 0, \qquad \left(k \in G\right).$$
⁽²⁾

(v) A^{**} is approximately Connes-amenable. Then, $(i) \Leftrightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv)$.

Moreover, if A is Arens regular, then $(v) \Rightarrow (i)$. Proof. $(ii) \Rightarrow (i)$ and $(iv) \Rightarrow (iii)$ are clear. If A is Arens regular, we have the implication $(v) \Rightarrow (i)$.

 $(i) \Rightarrow (iv)$: Suppose that the net $(M_{\alpha})_{\alpha} \subseteq \ell^{\infty} (G \times G)^{*}$ are given as in part (iii) of Proposition 1.2. Define $\phi: \ell^{\infty}(G) \rightarrow \ell^{\infty}(G \times G)$ by putting $\langle \delta_{(g,h)}, \phi(f) \rangle = f_{g}$ for $g = h^{-1}$, and otherwise equals zero.Let $N_{\alpha} = \phi^{*}(M_{\alpha})$. Then we have

$$\phi((\Omega(g,g^{-1}))_g) = (\delta_{gh,e}\Omega(g,h))_{(g,h)\in G\times G}$$

where δ is the Kronecker delta. So that

$$\left\langle \left(\Omega\left(g,g^{-1}\right)\right)_{g},N_{\alpha}^{'}\right\rangle = \left\langle \left(\delta_{gh,e}\Omega\left(g,h\right)\right)_{\left(g,h\right)\in G\times G},M_{\alpha}^{'}\right\rangle = \left\langle \left(\delta_{gh,e}\right)_{\left(g,h\right)\in G\times G},\delta_{e}\right\rangle = \delta_{e,e} = 1$$

by condition (2) of part (iii) of Proposition 1.2.

Fix $k \in G$ and $f \in \ell^{\infty}(G)$. Define $F: G \times G \to C$ by

$$F(g,h) = \delta_{gh,k} f_g \omega(k) \omega(hk^{-1}) \omega(h)^{-1} \qquad (g,h \in G)$$

F It is clear that is bounded and

$$\|J_{k}^{*}(N_{\alpha}^{'})-N_{\alpha}^{'}\|=\sup\left\{\left|\left\langle\left(F(hk,g)\Omega(h,k)-F(h,kg)\Omega(k,g)\right)_{(g,h)},M_{\alpha}^{'}\right\rangle\right|:f\in ball\ \ell^{\infty}(G)\right\}$$

so that $J_k^*(N_{\alpha}) - N_{\alpha} \to 0$, by condition (1) of part (*iii*) For $f = (f_g)_g \in \ell^\infty(G)$, we have of Proposition 1.2.

 $(iii) \Rightarrow (ii)$: To show that A is approximately amenable, we show that part (ii) of Theorem 1.1 is satisfied. $\psi: \ell^{\infty}(G \times G) \to \ell^{\infty}(G)$ Define by $\langle \delta_g, \psi(F) \rangle = F(g, g^{-1})$, for each $F \in \ell^\infty(G imes G)$ and $g \in G$. Let $(N_{\alpha})_{\alpha}$ be as part (*iii*). Let $M_{\alpha} = \psi^*(N_{\alpha})$.

 $||F||_{\infty} \le ||f||_{\infty} \omega(k) \omega(k^{-1})$. Let T be the operator associated with F. It is easy to check that F satisfies the conditions of Proposition 1.2. Notice that

$$\left\langle \delta_{(g,h)}, \phi(J_k(f)) \right\rangle = \delta_{gh,e} f_{kg} \omega(kg) \omega(g)^{-1} \omega(g^{-1}k^{-1}) \omega(g^{-1})^{-1}$$

thus we have

$$\left\langle \left(f_{gh} \Omega(g,h)\right)_{(g,h)}, M_{\alpha} \right\rangle = \left\langle \left(f_{e} \Omega(g,g^{-1})\right)_{g}, N_{\alpha} \right\rangle \rightarrow f_{e}$$

so that the condition (2) part (ii) of Theorem 1.1 holds. Let $f: G \times G \rightarrow C$ be a bounded function and let $k \in G$. Then

$$\psi\left(\left(f\left(hk,g\right)\Omega\left(h,k\right)-f\left(h,kg\right)\Omega\left(k,g\right)\right)_{\left(g,h\right)}\right)=\left(f\left(g^{-1}k,g\right)\Omega\left(g^{-1},k\right)-f\left(g^{-1},kg\right)\Omega\left(k,g\right)\right)_{g}$$

 $F: G \times G \rightarrow C$ Define by $F(g,h) = f(hk,g)\Omega(h,k)$, for each $g,h \in G$. So F is bounded and $\parallel F \parallel_{\scriptscriptstyle \infty} \, \leq \, \parallel f \parallel_{\scriptscriptstyle \infty} \,$. Then

$$\langle (f(hk,g)\Omega(h,k) - f(h,kg)\Omega(k,g))_{(g,h)}, M_{\alpha} \rangle = \langle \psi(f), N_{\alpha} - J_{k}^{*}(N_{\alpha}) \rangle$$

Consequently, using condition (2) part (iii), we have established condition (1) part (ii) of Theorem 1.1.

REFERENCES

[1] M. Daws, "Connes-amenability of bidual and weighted semigroup algebras," Math. Scand. vol. 99, 2006, pp. 217-246.

- G. H. Esslamzadeh, B. Shojaee, and A. Mahmoodi, "Approximate [2] Connes-amenability of dual Banach algebras," Bull. Belgian Math. Soc. Simon Stevin, (to appear).
- [3] F. Ghahramani and R. J. Loy, "Generalized notions of amenability," J. Funct. Anal. vol. 208, 2004, pp. 229-260.
- F. Ghahramani, R. J. Loy, and Y. Zang, "Generalized notions of [4] amenability," II. J. Funct. Anal. vol. 254, 2008, pp. 1776-1810.
- [5] B. E. Johnson, "Approximate diagonals and cohomology of certain annihilator Banach algebras," Amer. J. Math. vol. 94, 1972, pp. 685-698
- V. Runde, "Amenability for dual Banach algebras," Studia Math. vol. [6] 148, 2001, pp. 47-66.
- V. Runde, "Lectures on amenability," Lecture Notes in Mathematics. [7] vol. 1774, Springer Verlag, Berlin, 2002.
- V. Runde, "Dual Banach algebras: Connes-amenability, normal, [8] virtual diagonals, and injectivity of the predual bimodule," Math. Scand. vol. 95, 2004, pp. 124-144.