Characterization of P-Compactly Packed Modules

Lamis J. M. Abu Lebda

Abstract—Let R be a commutative ring with 1, and M is a (left) R-module. We introduce the concepts of (strongly) pcompactly packed submodules as: A proper submodule N of an R-module M is called P-Compactly Packed if for each family $\{N_{\alpha}\}_{\alpha\in\Lambda}$ of primary submodules of M with $N \subseteq \bigcup_{\alpha \in \Lambda} N_{\alpha} \quad \text{, there exists} \quad \alpha_1, \alpha_2, ..., \alpha_n \in \Lambda \quad \text{such}$ that $N \subseteq \bigcup_{i=1}^n N_{\alpha_i}$. If $N \subseteq N_\beta$ for some $\beta \in \Lambda$, then $_N$ is called Strongly P-Compactly Packed. In this paper, we list some basic properties of this concept. In addition, the necessary and sufficient conditions for an R-module M to be (strongly) P-Compactly Packed are investigated.We also generalize the Prime Avoidance Theorem for modules that was proved in [7] to the Primary Avoidance Theorem for modules. Furthermore, we find the conditions on an R-module M that make the following important result true, that is for a multiplication Bezout module M, M is strongly P- compactly packed if and only if every primary submodule of M is strongly P- compactly packed.

Index Terms—P-compactly packed submodule, Strongly pcompactly packed submodule, MAXIMAL submodule, bezout module.

I. INTRODUCTION

Zaynab A.A.Al-Ani generalized the concept of compactly packed rings to modules and introduced the definition of compactly packed submodule and strongly compactly packed submodule; a proper submodule N of an R-module M is called compactly Packed if for each family $\{N_{\alpha}\}_{\alpha \in \Lambda}$ of prime submodules of M with

 $N \subseteq \bigcup_{\alpha \in \Lambda} N_{\alpha}$ there exist $\alpha_1, \alpha_2, ..., \alpha_n \in \Lambda$ such that $N \subseteq \bigcup_{i=1}^n N_{\alpha_i}$. If $N \subseteq N_{\beta}$ for some $\beta \in \Lambda$ then N is called Strongly Compactly Packed. A module M is said to be Compactly Packed (Strongly Compactly Packed) if every proper submodule of M is compactly packed (or strongly compactly packed) submodule [1].

In this paper, we discuss the situation when the union of a family of primary submodules of M is considered.

C. P. Lu generalized the Prime Avoidance Theorem to modules in terms of prime submodules [5]. We consider a generalization of this theorem to modules in terms of primary submodules.

II. P-COMPACTLY PACKED AND STRONGLY P-COMPACTLY PACKED SUBMODULES

We introduce the following definition for p-compactly packed submodule and strongly p-compactly packed

Manuscript received May 10, 2012; revised June 12, 2012

submodule.

Definition

A proper submodule N of an R-module M is called P-Compactly Packed if for each family $\{N_{\alpha}\}_{\alpha \in \Lambda}$ of

primary submodules of M with $N \subseteq \bigcup_{\alpha \in \Lambda} N_{\alpha}$, there will also $M \subseteq \bigcup_{\alpha \in \Lambda} N_{\alpha}$.

exist $\alpha_1, \alpha_2, ..., \alpha_n \in \Lambda$ such that $N \subseteq \bigcup_{i=1}^n N_{\alpha_i}$.

If $N \subseteq N_{\beta}$ for some $\beta \in \Lambda$, then N is called Strongly P-

Compactly Packed.

A module M is said to be P-Compactly Packed (Strongly P-Compactly Packed) if every proper submodule of M is p-compactly packed (strongly p-compactly packed).

It is clear every strongly p-compactly packed submodule is a p-compactly packed submodule but the converse is not true is general, as is seen by the following example.

Example

Let *V* be a vector space of dimension greater than 2 over the field F = Z / 2Z. Then every subspace of *V* is prime, so every subspace of *V* is primary. Let e_1 and e_2 be distinct vectors of a basis for *V*, $V_1 = e_1F$, $V_2 = e_2F$, $V_3 = (e_1 + e_2)F$, and $L = \{0, e_1, e_2, e_1 + e_2\} = V_1 \cup V_2 \cup V_3$ is an efficient union of three primary submodules with $\sqrt{[V_i:M]} = (0)$, but $L \not\subset V_i$ for every i = 1, 2, 3.

In the following we give a condition under which the converse holed. For that we give a generalization of the prime avoidance theorem [5] in terms of primary submodules.

Definition

Let $L_1, L_2, ..., L_n$ be submodules of an R-module M. We call a covering $L \subseteq L_1 \bigcup L_2 \bigcup ... \bigcup L_n$ efficient if no L_k is superflous. Analogously we shall say $L = L_1 \bigcup L_2 \bigcup ... \bigcup L_n$ is an efficient union if none of the L_k 's may be excluded.

Any cover or union consisting of submodules of M can be reduced to an efficient one called an efficient reduction by deleting any unnecessary submodules. A covering of a submodule by two submodules of a module is never efficient. Thus $L \subseteq L_1 \bigcup L_2 \bigcup ... \bigcup L_n$ may be possibly an efficient covering only when n = 1 or $n \ge 2$ [6].

Proposition

Let $L \subseteq L_1 \cup L_2 \cup ... \cup L_n$ be an efficient covering consisting of submodules of an R-moduleM where $n \ge 2$. If $\sqrt{[L_j:M]} \not\subset \sqrt{[L_k:M]}$ for every $j \ne k$, then no L_k for

L. J. M. A. Lebda is with the Abu Dhabi University, UAE (e-mail: lamis jomah@yahoo.com).

$k = \{1, \dots, n\}$ is a primary submodule of M.

Proof. Since $L \subseteq L_1 \cup L_2 \cup ... \cup L_n$ is an efficient covering, then $L = (L \cap L_1) \cup (L \cap L_2) \cup ... \cup (L \cap L_n)$ is an efficient union. Hence for every $k \leq n$ there exists an element $e_k \in L - L_k$. Moreover, by Lemma (??), $\bigcap_{j \neq k} (L \cap L_j) = \bigcap_{j=1}^n (L \cap L_j) \subseteq (L \cap L_k)$ that is

 $\bigcap_{j \neq k} (L \cap L_j) \subseteq (L \cap L_k). \text{ Now, for every } j \neq k ,$ by hypothesis, $\sqrt{[L_j:M]} \not\subset \sqrt{[L_k:M]}$ so that there exists $s_j \in \sqrt{[L_j:M]}$ but $s_j \notin \sqrt{[L_k:M]}$. Therefore there exists $t_j \in Z^+$ such that $s_j^{t_j} M \subseteq L_j$. Let $t = \prod_{j \neq k} t_j = t_1 \dots t_{k-1} t_{k+1} \dots t_n$. Suppose that some L_k is a primary submodule so $\sqrt{[L_k:M]}$ is a prime ideal of R. Let $s = \prod_{j \neq k} s_j = s_1 \dots s_{k-1} s_{k+1} \dots s_n$. So $s^t M \subseteq L_j$ for every $j \neq k$. But $s \notin \sqrt{[L_k:M]}$. Consequently $s^t e_k \in (L \cap L_j)$ for every $j \neq k$. But $s^t e_k \notin (L \cap L_k)$. But this contradicts the fact that $\bigcap_{j \neq k} (L \cap L_j) \subseteq (L \cap L_k)$. Therefore

 L_k is not primary submodule.

Theorem (The Primary Avoidance Theorem)

Let M be an R-module , L_1 , L_2 ,..., L_n a finite number of submodules of M and L a submodule of M such that $L \subseteq L_1 \bigcup L_2 \bigcup ... \bigcup L_n$ assume that at most two of the L_i 's are not primary submodules and that $\sqrt{[L_j:M]} \not\subset \sqrt{[L_k:M]}$ whenever $j \neq k$ then $L \subseteq L_k$ for some k.

Proof. For the given covering $L \subseteq L_1 \cup L_2 \cup ... \cup L_n$, let $L \subseteq L_{i_1} \cup L_{i_2} \cup ... \cup L_{i_m}$ be an efficient reduction, then $1 \le m \le n$ and $m \ne 2$. If m > 2 there exists at least one L_{i_j} which is primary. In view of proposition (1.4) this is impossible as $\sqrt{[L_j:M]} \not\subset \sqrt{[L_k:M]}$ if $j \ne k$. Hence m = 1, thus $L \subseteq L_k$ for some k.

The condition $\sqrt{[L_j:M]} \not\subset \sqrt{[L_k:M]}$ if $j \neq k$ in the statement of the theorem is essential as is seen in example (1.2) If N is a p-compactly packed submodule of an R-moduleM, such that whenever $H \neq K$, then $\sqrt{[H:M]} \not\subset \sqrt{[L:M]}$ for every proper submodules *H* and *L* of *M*, then by the primary avoidance theorem, N is a strongly p-compactly packed submodule.

Recall that J(M) denotes the Jacobson Radical of M [4, p.55]. The following proposition shows that p-compactly packed modules which have J (M) \neq M, satisfies a certain

kind of ascending chain condition.

Proposition

Let M be a p-compactly packed R-module with J (M) \neq M, then M satisfies the ascending chain condition for primary submodules.

Proof. $N_1 \subseteq N_2 \subseteq N_3 \subseteq \dots$ be an ascending chain of primary submodules of M. Let $N = \bigcup_{i} N_{i}$. We claim that $N \neq M$. In fact if N = M and H is a maximal submodule of M then $H \neq \bigcup_i N_i$, so there exists $n_1, n_2, ..., n_k$ such that $H \subseteq \bigcup_{i=1}^k N_{n_i}$, and since $N_1 \subseteq N_2 \subseteq N_3 \subseteq \dots$ is an ascending chain, so there exists $m \in \{1, ..., k\}$ such that $\bigcup_{i=1}^{k} N_{n_i} = N_{n_m}$ so $H \subseteq N_{n_m}$, then $H = N_{n_m}$, and consequently $M = \bigcup_i N_i = N_{n_m}$ which is a contradiction. So N is a proper submodule of M, thus there exists $n_1, n_2, ..., n_k$ such that $N \subseteq \bigcup_{i=1}^{k} N_{n_i}$, and since $N_1 \subseteq N_2 \subseteq N_3 \subseteq ...$ is an ascending chain, so there exists $m \in \{1, ..., k\}$ such that $\bigcup_{i=1}^k N_{n_i} = N_{n_m} \quad \text{ that } \quad \text{ is } \quad \bigcup_i N_i \subseteq N_{n_m}$ so $N_1 \subseteq N_2 \subseteq N_3 \subseteq \ldots N_{n_m}$. Therefore M satisfies the ascending chain condition on primary submodules.

Since finitely generated or multiplication module has a maximal submodule, the following corollary follows directly from the previous proposition.

Corollary

If M is a generated or multiplication p-compactly finitely module, then M satisfies the ascending chain condition for primary submodules.

The following proposition and theorem give characterizations of strongly p-compactly packed modules. Recall that the primary radical of a submodule N of an R-module M, denoted by $prad_M(N)$ is defined as the intersection of all primary submodules of M which contain N. If there exists no primary submodule of M containing N, we put $prad_M(N) = M$ [7].

A proper submodule N of an R-module M with $prad_M(N) = N$ will be called P-Radical Submodule [7].

Proposition

Let M be an R-module. M is strongly p-compactly packed if and only if every p-radical submodule of M is the primary radical of a cyclic submodule of it.

Proof. Let N be a p-radical submodule of M such that N is not the primary radical of a cyclic submodule of it, thus for each $m \in N, N \neq prad_M(\langle m \rangle)$. So there exists a primary submodule $L_m \supseteq \langle m \rangle$ but $N \not\subset L_m$.

Thus

$$N = \bigcup_{m \in N} \langle m \rangle \subseteq \bigcup_{m \in N} L_m \text{ for } \langle m \rangle \subseteq L_m \not\subset N \text{ . That is } L_m \not\subset N \text{ for each } m \in N.$$

This contradicts that M is strongly p-compactly packed

module. Conversely, let $N \subseteq \bigcup_{\alpha \in \Lambda} N_{\alpha}$ where N_{α} is a primary submodule of

M for each $\alpha \in \lambda$ and $N = prad_M(\langle m \rangle)$ for some $\textit{m} \in N.$ Since $\textit{m} \in N$, $\textit{m} \in \bigcup_{\alpha \in \Lambda} N_{\alpha}$, so there exists

 $\beta \in \Lambda$ such $m \in N_{\beta}$, hence that $\langle m \rangle \subseteq N_{\beta}$, so $prad_{M}(\langle m \rangle) \subseteq N_{\beta}$, that is $N \subseteq N_{\beta}$. Therefore M is a strongly p-compactly packed module.

Theorem

Let M be an R-module. The following statements are equivalent:-

- 1) M is a strongly p-compactly packed module.
- 2) For every proper submodule N of M, there exists $m \in N$ such that $prad_{M}(N) = prad_{M}(\langle m \rangle).$
- 3) For every proper submodule N of M, if $\{N_{\alpha}\}_{\alpha \in \Lambda}$ is a family of submodules of M, such that

 $N \subseteq \bigcup N_{\alpha}$, then there exists $\beta \in \Lambda$ such that $N \subseteq prad_{M}(N_{\beta}).$

4) For every proper submodule N of M, if $\{N_{\alpha}\}_{\alpha \in \Lambda}$ is a family of p-radical submodules of M, with $N \subseteq \{N_{\alpha}\}_{\alpha \in \Lambda}$ there exists $\beta \in \Lambda$ such that $N \subseteq N_{\beta}$.

Proof. (1) \Rightarrow (2): By the same argument of the proof of (1.8).

 $(2) \Rightarrow (3)$: Let N be a proper submodule of M and $\{N_{\alpha}\}_{\alpha\in\Lambda}$ be a family of submodules of M, such that $N \subseteq \bigcup_{\alpha \in \Lambda} N_{\alpha}$. By (2) there exists $m \in N$ such that $prad_{M}(N) = prad_{M}(\langle m \rangle)$. Since $m \in \bigcup_{\alpha \in \Lambda} N_{\alpha}$, it follows

that there exists $\beta \in \Lambda$ such that $m \in N_{\beta}$ hence $\langle m \rangle \subseteq N_{\beta}$, so $N \subseteq prad_{M}(N) = prad_{M}(\langle m \rangle) \subseteq prad_{M}(N_{\beta})^{Proposition}$

 $(3) \Rightarrow (4)$: It follows directly from the definition of Pradical submodule N.

 $(4) \Rightarrow (1)$: It is trivial.

In what follows we give a proposition which gives information about a strongly p-compactly packed module with $J(M) \neq M$.

Proposition

Let M be a strongly p-compactly packed R-module such that $J(M) \neq M$. Then M satisfies the ascending chain condition for P-radical submodules.

Proof. Let $N_1 \subseteq N_2 \subseteq N_3 \subseteq \dots$ be an ascending chain of primary p-radical submodules of M. Let $L = \bigcup_{i} N_{i}$, then L is a submodule of M. We claim that L is a proper submodule of M. In fact if L = M and H a maximal submodule of M, so $H \not\subset \bigcup_i N_i$ then by theorem ((1.9)(iv)) there exists j such that $H \subseteq N_i$ and since H is a maximal submodule $H = N_i$ and this implies $\bigcup_i N_i \subseteq N_i$ that is $M \subseteq N_i$ which is a contradiction. So L is a proper submodule of M and by theorem (1.9) there exists i such that $L \subseteq N_i$ so $N_1 \subseteq N_2 \subseteq N_3 \subseteq \dots N_i$ that is M satisfies the ascending chain condition for p-radical submodules.

The following is an immediate consequence of proposition (1.10).

Corollary

Let M be a finitely generated or multiplication strongly pcompactly packed R-module, then M satisfies the ascending chain condition for p-radical submodules.

Recall that an R-module M is called Bezout Module if every finitely generated submodule of M is cyclic.

In the following proposition we give a condition for the converse of proposition (1.10) to hold.

Proposition

Let M be a Bezout R-module. If M satisfies the ascending chain condition for P-radical submodules, then M is strongly p-compactly packed module.

Proof. Let N be a proper submodule of M, it is easy to show that there exists a finitely generated submodule L of N such that $prad_{M}(N) = prad_{M}(L)$ But M is Bezout module so L is a cyclic submodule, there exists $m \in L$, such that $L = \langle m \rangle$, this implies $m \in N$ and $prad_{M}(N) = prad_{M}(\langle m \rangle)$ therefore by theorem (1.9), M is a strongly p-compactly packed module.

Now, we give a characterization of a strongly pcompactly packed finitely generated or multiplication module.

Let M be a multiplication or finitely generated R-module. If we have one of the following:

- 1) M is a cyclic module.
- M is a Bezout module. 2)
- 3) R is a Bezout ring.

Then M is a strongly p-compactly packed module if and only if every primary submodule of M is a strongly pcompactly packed submodule.

Proof. Suppose that every primary submodule of M is strongly p-compactly packed. Let N be a proper submodule of M such that $N \subseteq \bigcup_{\alpha \in \Lambda} N_\alpha$ where N_α is a primary submodule of M for each $\alpha \in \Lambda$. Assume $\bigcup_{\alpha \in \Lambda} N_{\alpha} = M$. packed Then L is strongly p-compactly and since $N \subseteq L \subseteq M = \bigcup_{\alpha \in \Lambda} N_{\alpha}$, so there exists $\beta \in \Lambda$

such that $L \subseteq N_{\beta}$, hence $N \subseteq L \subseteq N_{\beta}$. Now if $\bigcup N_{\alpha} \neq M$, let $S^* = M - \bigcup_{\alpha \in \Lambda} N_{\alpha}$ and $S^{\epsilon_{\Lambda}} = R - \bigcup_{\alpha \in \Lambda} \sqrt{[N_{\alpha} : M]}$ so S^* is an S-closed subset of M and since $N \subseteq \bigcup_{\alpha \in \Lambda} N_{\alpha}$

it follows $N \subseteq M - S^*$, so there exists a submodule L

Maximal in $M-S^*$ and contains N [1, p. 75], L is a prime [1, p. 61], so primary submodule, but $L \subseteq \bigcup_{\alpha \in \Lambda} N_{\alpha}$ (because $L \subseteq M-S^*$) so there exists $\beta \in \Lambda$ such that $L \subseteq N_{\beta}$, hence $N \subseteq L \subseteq N_{\beta}$ Therefore M is a strongly p-compactly packed module. The converse is trivial.

In the remainder of this section we shall investigate the relation between the strongly p-compactly packed modules, p-compactly packed modules and the modules of fractions.

Our next result has some interest in itself.

Lemma

Let M be an R-module and S a multiplicatively closed set in R. If W is a primary submodule of the R_S -module M_S , then $\phi^{-1}(W)$ is a primary submodule of M.

Proof. Suppose that W is a primary submodule of M_S . First to show that is proper submodule of M, it is sufficient to show $[\phi^{-1}:M] \cap S = \phi$. Suppose $r \in [\phi^{-1}:M] \cap S$, thus $r \in S$ and $rm \in \phi^{-1}(W)$ for all $m \in M$, $\phi(rm) = \frac{rm}{1} \in W$, for all $m \in M$. Let $\frac{a}{t} \in M_S$, so $\frac{a}{t} = \frac{ra}{rt} = \frac{ra}{1} \cdot \frac{1}{rt} \in W$, thus $M_S \subseteq W$ which is contradiction.

Now to show $\phi^{-1}(W)$ is primary submodule, let $r \in R$,

 $\begin{array}{l} m \in M \quad \text{such that} \quad rm \in \phi^{-1}(W) \quad \text{so } \phi(rm) \in W \quad ,\\ \hline m \in M \quad \text{such that} \quad rm \in \phi^{-1}(W) \quad \text{so } \phi(rm) \in W \quad ,\\ \hline \frac{rm}{1} = \frac{r}{1} \cdot \frac{m}{1} \in W \quad \text{but W is primary submodule of } M_S \quad ,\\ \hline \text{hence either } \quad \frac{m}{1} \in W \quad \text{or } \phi(m) = \frac{m}{1} \in W \quad \text{this implies} \\ m \in \phi^{-1}(W) \quad \text{or } \quad \frac{r}{1} \in \sqrt{[W:M_S]} \quad \text{so there exists} \quad n \in Z^+ \text{ such} \\ \hline \text{that} \quad \frac{r^n}{1} \cdot \frac{m}{s} \in W \quad \text{for all } \frac{m}{s} \in M_S \quad .\\ \hline \text{Therefore } \phi(r^nm) = \frac{r^nm}{1} = \frac{r^nms}{s} = \frac{r^nm}{s} \cdot \frac{s}{1} \in W \quad , \quad \text{hence} \\ r^nm \in \phi^{-1}(W) \quad \text{for all } m \in M \quad , \quad \text{thus} \quad r \in \sqrt{[\phi^{-1}(W):M]} \quad , \end{array}$

therefore $\phi^{-1}(W)$ is primary.

Now, we look at the relation between strongly pcompactly packed module M, and the module of fractions M_S .

Proposition

Let M be an R-module and S a multiplicatively closed set in R. If M is strongly p-compactly packed R-module then M_S is strongly p-compactly packed R_S -module.

Proof. Suppose $H \subseteq \bigcup_{\alpha \in \Lambda} W_{\alpha}$ where H is a proper submodule of M_S and W_{α} is a primary submodule of M_S for each $\begin{array}{lll} \alpha \in \Lambda & . & \text{Hence } \phi^{-1}(H) \subseteq \phi^{-1}(\bigcup_{\alpha \in \Lambda} W_{\alpha}) & . & \text{So} \\ \phi^{-1}(H) \subseteq \bigcup_{\alpha \in \Lambda} \phi^{-1}(W_{\alpha}) \text{ By Lemma } (1.14) \ \phi^{-1}(W_{\alpha}) \text{ is a primary} \\ \text{submodule of } M, & \text{there exists } \beta \in \Lambda & \text{such that } \\ \phi^{-1}(H) \subseteq \phi^{-1}(W_{\beta}) & \text{hence } (\phi^{-1}(H))_{S} \subseteq (\phi^{-1}(W_{\beta}))_{S} & . & \text{We will} \\ \text{show that}(\phi^{-1}(K))_{S} = K & \text{for every submodule K of } M_{S} & . & \text{Let} \\ \frac{x}{s} \in (\phi^{-1}(K))_{S} & \text{where } x \in \phi^{-1}(K) & \text{and } s \in S & . & \text{So } \phi(x) \in K, & \text{that} \\ \text{is } \frac{x}{1} \in K, & \text{hence } \frac{x}{1} \cdot \frac{1}{s} = \frac{x}{s} \in K, & \text{so } (\phi^{-1}(K))_{S} \subseteq K & . & \text{Now let} \\ \frac{x}{s} \in K, & \text{thus } \frac{x}{s} \cdot \frac{s}{1} \in K, & \text{hence } \frac{x}{1} \in K & \text{that is } \phi(x) \in K & \text{so} \\ x \in \phi^{-1}(K), & \text{thus } \frac{x}{s} \in (\phi^{-1}(K))_{S} & \text{therefore } K \subseteq (\phi^{-1}(K))_{S}, & \text{consequently } K = (\phi^{-1}(K))_{S} & \text{for all } K \subseteq M_{S} & . & \text{It follows} \\ H \subseteq W_{\beta} & . & \text{Hence } M_{S} & \text{is a strongly p-compactly packed} \\ \text{module.} \end{array}$

Turning now to the relation between p-compactly packed module M and the module of fractions $M_{\rm S}$.

Proposition

Let M be an R-module and S a multiplicatively closed set in R. If M is p-compactly packed R-module then M_S is pcompactly packed R_S -module.

Proof. Let $H \subseteq \bigcup_{\alpha \in \Lambda} W_{\alpha}$ H is a proper submodule of M_S and W_{α} is a primary submodule of M_S for each $\alpha \in \Lambda$.

Hence
$$\phi^{-1}(H) \subseteq \phi^{-1}(\bigcup_{\alpha \in \Lambda} W_{\alpha})$$
 . So

 $\phi^{-1}(H) \subseteq \bigcup_{\alpha \in \Lambda} \phi^{-1}(W_{\alpha})$ By Lemma (1.14) $\phi^{-1}(W_{\alpha})$ is a primary submodule of M.

there exists $\alpha_1, \alpha_2, ..., \alpha_n \in \Lambda$ such that $\phi^{-1}(H) \subseteq \bigcup_{i=1}^n \phi^{-1}(W_{\alpha_i})$ hence

 $(\phi^{-1}(H))_S \subseteq \bigcup_{i=1}^n ((\phi^{-1}(W_\beta)))_S = \bigcup_{i=1}^n (\phi^{-1}(W_{\alpha_i}))_S.$

Now, as in the proof of proposition (1.15), $H \subseteq \bigcup_{\alpha \in \Lambda} W_{\alpha}$.

Therefore M_S is p-compactly packed module.

The converses of the last two propositions are not true in general as is seen in the following example:

Example

Let X be an infinite set. Let R be the ring $(P(X), \Delta, \cap)$ which is a Bolean ring so it is regular.

Let $T = \{H|H \text{ is a finite subset of } X\}$, so T is nonmaximal ideal of P(X), and for any $H \in T$ we have $\langle H \rangle$ is a radical ideal, since every proper ideal in a regular ring is radical ideal. This implies that $\langle H \rangle = \bigcap \{P|P \text{ is a prime ideal} \ Contains H\}$. It is easy to show that every primary ideal L of P(X) is prime. This implies that $prad_{P(X)}(H) = \langle H \rangle$, since $T \not\subset \langle H \rangle$ for all $H \in T$, that is $T \not\subset prad_{P(X)}(\langle H \rangle)$ for all $H \in T$ so there exists primary ideal P_H such that $P_H \supseteq \langle H \rangle$ but $T \not\subset P_H$. Since $T = \bigcup_{H \in T} \langle H \rangle \subseteq \bigcup_{H \in T} P_H$ So T is not p-compactly packed submodule. So P(X) is not p-compactly packed module.

On the other hand, for any maximal ideal P of R, R_p is a field because R is a regular ring, so R_P is p-compactly packed R_{P} -module.

REFERENCES

A. Z. Ani, "Compactly Packed Modules and Coprimely Packed [1] Modules," M.Sc. Thesis, Baghdad University, College of Science, 1996.

- V. Erdo'gdu, "Coprimely Packed Rings," J. of Number Theory, vol. [2] 28, pp.1-5, 1989.
- C. Gottlieb, "On Finite Unions of Ideals and Cosets," Comm. Algebra, [3] vol. 22, 3087-3097, 1994.
- [4] M. D. Larsen and P. J. McCarlthy, "Multiplication Theory of Ideals," Academic Press, New York, 1971.
- C. P. Lu, "Union of Prime Submodules, Houston J., Math," vol. 23, [5] pp. 203-213, 1997. N. McCoy, "A Note on Finite Unions of Ideals and Subgroups," in
- [6] Proc. Amer. Math. Soc, vol. 8, pp.633-637, 1957.
- [7] J. M. A. Lamis, "The Primary Radical of a submodule, Advances in Pure Mathematics," 2012.