Characterization of P-Compactly Packed Modules

Lamis J. M. Abu Lebda

Abstract

Let R be a commutative ring with 1 , and M is a (left) R -module. We introduce the concepts of (strongly) p compactly packed submodules as: A proper submodule N of an R -module M is called P -Compactly Packed if for each family $\left\{N_{\alpha}\right\}_{\alpha \in \Lambda}$ of primary submodules of M with $N \subseteq \cup_{\alpha \in \Lambda} N_{\alpha} \quad$, there exists $\quad \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \Lambda \quad$ such that $N \subseteq \bigcup_{i=1}^{n} N_{\alpha_{i}}$. If $N \subseteq N_{\beta}$ for some $\beta \in \Lambda$, then N is called Strongly P-Compactly Packed. In this paper, we list some basic properties of this concept. In addition, the necessary and sufficient conditions for an $R-$ module M to be (strongly) P-Compactly Packed are investigated.We also generalize the Prime Avoidance Theorem for modules that was proved in [7] to the Primary Avoidance Theorem for modules. Furthermore, we find the conditions on an R-module M that make the following important result true, that is for a multiplication Bezout module \mathbf{M}, \mathbf{M} is strongly \mathbf{P} - compactly packed if and only if every primary submodule of M is strongly P- compactly packed.

Index Terms-P-compactly packed submodule, Strongly pcompactly packed submodule, MAXIMAL submodule, bezout module.

I. Introduction

Zaynab A.A.Al-Ani generalized the concept of compactly packed rings to modules and introduced the definition of compactly packed submodule and strongly compactly packed submodule; a proper submodule N of an R-module M is called compactly Packed if for each family $\left\{N_{\alpha}\right\}_{\alpha \in \Lambda}$ of prime submodules of M with
$N \subseteq \bigcup_{\alpha \in \Lambda} N_{\alpha} \quad$ there exist $\quad \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \Lambda \quad$ such that $N \subseteq \bigcup_{i=1}^{n} N_{\alpha_{i}}$. If $N \subseteq N_{\beta}$ for some $\beta \in \Lambda$ then N is called Strongly Compactly Packed. A module M is said to be Compactly Packed (Strongly Compactly Packed) if every proper submodule of M is compactly packed (or strongly compactly packed) submodule [1].

In this paper, we discuss the situation when the union of a family of primary submodules of M is considered.
C. P. Lu generalized the Prime Avoidance Theorem to modules in terms of prime submodules [5]. We consider a generalization of this theorem to modules in terms of primary submodules.

II. P-Compactly Packed and Strongly PCompactly Packed Submodules

We introduce the following definition for p -compactly packed submodule and strongly p-compactly packed

Manuscript received May 10, 2012; revised June 12, 2012

L. J. M. A. Lebda is with the Abu Dhabi University, UAE (e-mail: lamis_jomah@yahoo.com).
submodule.

Definition

A proper submodule N of an R -module M is called P Compactly Packed if for each family $\left\{N_{\alpha}\right\}_{\alpha \in \Lambda}$ of
primary submodules of M with $N \subseteq \bigcup_{\alpha \in \Lambda} N_{\alpha}$, there exist $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \Lambda$ such that $N \subseteq \bigcup_{i=1}^{n} N_{\alpha_{i}}$.

If $_{N} \subseteq N_{\beta}$ for some $\beta \in \Lambda$, then N is called Strongly P Compactly Packed.

A module M is said to be P-Compactly Packed (Strongly P-Compactly Packed) if every proper submodule of M is p compactly packed (strongly p-compactly packed).

It is clear every strongly p-compactly packed submodule is a p-compactly packed submodule but the converse is not true is general, as is seen by the following example.

Example

Let V be a vector space of dimension greater than 2 over the field $F=Z / 2 Z$. Then every subspace of V is prime, so every subspace of V is primary. Let e_{1} and e_{2} be distinct vectors of a basis for $V \quad, \quad V_{1}=e_{1} F$, $V_{2}=e_{2} F, \quad V_{3}=\left(e_{1}+e_{2}\right) F, \quad$ and $L=\left\{0, e_{1}, e_{2}, e_{1}+e_{2}\right\}=V_{1} \cup V_{2} \cup V_{3}$ is an efficient union of three primary submodules with $\sqrt{\left[V_{i}: M\right]}=(0)$, but $L \not \subset V_{i}$ for every $i=1,2,3$.

In the following we give a condition under which the converse holed. For that we give a generalization of the prime avoidance theorem [5] in terms of primary submodules.

Definition

Let $L_{1}, L_{2}, \ldots, L_{n}$ be submodules of an R-module M . We call a covering $L \subseteq L_{1} \cup L_{2} \cup \ldots \cup L_{n}$ efficient if no L_{k} is superflous. Analogously we shall say $L=L_{1} \cup L_{2} \cup \ldots \bigcup L_{n}$ is an efficient union if none of the $L_{k}{ }^{\prime} s$ may be excluded.

Any cover or union consisting of submodules of M can be reduced to an efficient one called an efficient reduction by deleting any unnecessary submodules. A covering of a submodule by two submodules of a module is never efficient. Thus $L \subseteq L_{1} \cup L_{2} \cup \ldots \cup L_{n}$ may be possibly an efficient covering only when $n=1$ or $n>2$ [6].

Proposition

Let $L \subseteq L_{1} \cup L_{2} \cup \ldots \cup L_{n}$ be an efficient covering consisting of submodules of an R-moduleM where $n>2$. If $\sqrt{\left[L_{j}: M\right]} \not \subset \sqrt{\left[L_{k}: M\right]}$ for every $j \neq k$, then no L_{k} for
$k=\{1, \ldots, n\}$ is a primary submodule of M.
Proof. Since $L \subseteq L_{1} \cup L_{2} \cup \ldots \cup L_{n}$ is an efficient covering,
then
$L=\left(L \bigcap L_{1}\right) \cup\left(L \bigcap L_{2}\right) \bigcup \ldots \bigcup\left(L \bigcap L_{n}\right) \quad$ is \quad an efficient union. Hence for every $k \leq n$ there exists an element $e_{k} \in L-L_{k}$. Moreover, by Lemma (??), $\bigcap_{j \neq k}\left(L \bigcap L_{j}\right)=\bigcap_{j=1}^{n}\left(L \bigcap L_{j}\right) \subseteq\left(L \bigcap L_{k}\right)$ that is
$\bigcap_{j \neq k}\left(L \bigcap L_{j}\right) \subseteq\left(L \bigcap L_{k}\right)$. Now, for every $j \neq k$, by hypothesis, $\sqrt{\left[L_{j}: M\right]} \not \subset \sqrt{\left[L_{k}: M\right]}$ so that there exists $s_{j} \in \sqrt{\left[L_{j}: M\right]}$ but $s_{j} \notin \sqrt{\left[L_{k}: M\right]}$. Therefore there exists $\quad t_{j} \in Z^{+} \quad$ such \quad that $\quad s_{j}^{t_{j}} M \subseteq L_{j}$. Let $t=\prod_{j \neq k} t_{j}=t_{1} . . t_{k-1} t_{k+1} . . t_{n}$. Suppose that some L_{k} is a primary submodule so $\sqrt{\left[L_{k}: M\right]}$ is a prime ideal of R. Let $s=\prod_{j \neq k} s_{j}=S_{1} . . s_{k-1} S_{k+1} . . S_{n}$. So $S^{t} M \subseteq L_{j}$ for every $j \neq k$. But $s \notin \sqrt{\left[L_{k}: M\right]}$. Consequently $s^{t} e_{k} \in\left(L \bigcap L_{j}\right)$ for every $j \neq k$. But $s^{t} e_{k} \notin\left(L \bigcap L_{k}\right)$. But this contradicts the fact that $\bigcap_{j \neq k}\left(L \bigcap L_{j}\right) \subseteq\left(L \bigcap L_{k}\right)$. Therefore L_{k} is not primary submodule.

Theorem (The Primary Avoidance Theorem)

Let M be an R-module , $L_{1}, L_{2}, \ldots, L_{n}$ a finite number of submodules of M and L a submodule of M such that $L \subseteq L_{1} \cup L_{2} \cup \ldots \cup L_{n}$ assume that at most two of the $L_{i}{ }^{\prime} S$ are not primary submodules and that $\sqrt{\left[L_{j}: M\right]} \not \subset \sqrt{\left[L_{k}: M\right]}$ whenever $j \neq k$ then $L \subseteq L_{k}$ for some k.

Proof. For the given covering $L \subseteq L_{1} \cup L_{2} \cup \ldots \cup L_{n}$, let $L \subseteq L_{i 1} \cup L_{i_{2}} \cup \ldots \cup L_{i_{m}}$ be an efficient reduction, then $1 \leq m \leq n$ and $m \neq 2$. If $m>2$ there exists at least one $L_{i j}$ which is primary. In view of proposition (1.4) this is impossible as $\sqrt{\left[L_{j}: M\right]} \not \subset \sqrt{\left[L_{k}: M\right]}$ if $j \neq k$. Hence $m=1$, thus $L \subseteq L_{k}$ for some k.

The condition $\sqrt{\left[L_{j}: M\right]} \not \subset \sqrt{\left[L_{k}: M\right]}$ if $j \neq k$ in the statement of the theorem is essential as is seen in example (1.2) If N is a p-compactly packed submodule of an R-moduleM, such that whenever $H \neq K$, then $\sqrt{[H: M]} \not \subset \sqrt{[L: M]}$ for every proper submodules H and L of M, then by the primary avoidance theorem, N is a strongly p-compactly packed submodule.

Recall that $\mathrm{J}(\mathrm{M})$ denotes the Jacobson Radical of M [4, p.55]. The following proposition shows that p -compactly packed modules which have $J(M) \neq M$, satisfies a certain
kind of ascending chain condition.

Proposition

Let M be a p-compactly packed R-module with J (M) $\neq \mathrm{M}$, then M satisfies the ascending chain condition for primary submodules.

Proof. $N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq \ldots$ be an ascending chain of primary submodules of M. Let $N=\bigcup_{i} N_{i}$. We claim that $N \neq M$. In fact if $N=M$ and H is a maximal submodule of M then $H \neq \bigcup_{i} N_{i}$, so there exists $n_{1}, n_{2}, \ldots, n_{k}$ such that $H \subseteq \bigcup_{i=1}^{k} N_{n_{i}}$, and since $N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq \ldots$ is an ascending chain, so there exists $m \in\{1, \ldots, k\}$ such that $\bigcup_{i=1}^{k} N_{n_{i}}=N_{n_{m}}$ so $H \subseteq N_{n_{m}}$, then $H=N_{n_{m}} \quad$, and consequently $M=\bigcup_{i} N_{i}=N_{n_{m}}$ which is a contradiction. So N is a proper submodule of M , thus there exists $n_{1}, n_{2}, \ldots, n_{k}$ such that $N \subseteq \bigcup_{i=1}^{k} N_{n_{i}}$, and since $N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq \ldots$ is an ascending chain, so there exists $m \in\{1, \ldots, k\}$ such that $\bigcup_{i=1}^{k} N_{n_{i}}=N_{n_{m}} \quad$ that \quad is $\quad \bigcup_{i} N_{i} \subseteq N_{n_{m}} \quad$ so $N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq \ldots N_{n_{m}}$. Therefore M satisfies the ascending chain condition on primary submodules.

Since finitely generated or multiplication module has a maximal submodule, the following corollary follows directly from the previous proposition.

Corollary

If M is a generated or multiplication p-compactly finitely module, then M satisfies the ascending chain condition for primary submodules.

The following proposition and theorem give characterizations of strongly p-compactly packed modules. Recall that the primary radical of a submodule N of an Rmodule M , denoted by $\operatorname{prad}_{M}(N)$ is defined as the intersection of all primary submodules of M which contain N . If there exists no primary submodule of M containing N , we put $\operatorname{prad}_{M}(N)=\mathrm{M}[7]$.

A proper submodule N of an R-module M with $\operatorname{prad}_{M}(N)=\mathrm{N}$ will be called P-Radical Submodule [7].

Proposition

Let M be an R-module. M is strongly p-compactly packed if and only if every p-radical submodule of M is the primary radical of a cyclic submodule of it.

Proof. Let N be a p-radical submodule of M such that N is not the primaryradical of a cyclic submodule of it, thus for each $m \in N, N \neq \operatorname{prad}_{M}(\langle m\rangle)$. So there exists a primary submodule $L_{m} \supseteq\langle m\rangle$ but $N \not \subset L_{m}$.

Thus
$N=\underset{m \in N}{\cup}\langle m\rangle \subseteq \bigcup_{m \in N} L_{m}$ for $\langle m\rangle \subseteq L_{m} \not \subset N$. That is $L_{m} \not \subset N$ for each $m \in N$.
This contradicts that M is strongly p-compactly packed
module. Conversely, let $N \subseteq \bigcup_{\alpha \in \Lambda} N_{\alpha}$ where N_{α} is a primary submodule of
M for each $\alpha \in \lambda$ and $N=\operatorname{prad}_{M}(\langle m\rangle)$ for some $m \in N$. Since $m \in N, m \in \bigcup_{\alpha \in \Lambda} N_{\alpha}$, so there exists
$\beta \in \Lambda \quad$ such \quad that $\quad m \in N_{\beta} \quad$, hence $\langle m\rangle \subseteq N_{\beta}$, so $\operatorname{prad}_{M}(\langle m\rangle) \subseteq N_{\beta}$, that is $N \subseteq N_{\beta}$. Therefore M is a strongly p -compactly packed module.

Theorem

Let M be an R -module. The following statements are equivalent:-

1) M is a strongly p -compactly packed module.
2) For every proper submodule N of M, there exists $\quad m \in N \quad$ such that $\operatorname{prad}_{M}(N)=\operatorname{prad}_{M}(\langle m\rangle)$.
3) For every proper submodule N of M , if $\left\{N_{\alpha}\right\}_{\alpha \in \Lambda}$ is a family of submodules of M , such that $N \subseteq \cup N_{\alpha}$, then there exists $\beta \in \Lambda$ such that $N \subseteq \underset{\sim}{\varrho} \operatorname{prad}_{M}\left(N_{\beta}\right)$.
4) For every proper submodule N of M , if $\left\{N_{\alpha}\right\}_{\alpha \in \Lambda}$ is a family of p-radical submodules of M , with $N \subseteq\left\{N_{\alpha}\right\}_{\alpha \in \Lambda}$ there exists $\beta \in \Lambda$ such that $N \subseteq N_{\beta}$.
Proof. (1) $\Rightarrow(2)$: By the same argument of the proof of (1.8).
$(2) \Rightarrow(3):$ Let N be a proper submodule of M and $\left\{N_{\alpha}\right\}_{\alpha \in \Lambda}$ be a family of submodules of M , such that $N \subseteq \cup N_{\alpha \in \Lambda}$. By (2) there exists $m \in N$ such that $\operatorname{prad}_{M}(N)=\operatorname{prad}_{M}(\langle m\rangle)$. Since $m \in \bigcup_{\alpha \in \Lambda} N_{\alpha}$, it follows
that there exists $\beta \in \Lambda$ such that $m \in N_{\beta}$ hence

$$
\langle m\rangle \subseteq N_{\beta}, s o N \subseteq \operatorname{prad}_{M}(N)=\operatorname{prad}_{M}(\langle m\rangle) \subseteq \operatorname{prad}_{M}\left(N_{\beta}\right)
$$

$(3) \Rightarrow(4)$: It follows directly from the definition of P radical submodule N .
$(4) \Rightarrow(1)$: It is trivial.

In what follows we give a proposition which gives information about a strongly p-compactly packed module with $J(M) \neq M$.

Proposition

Let M be a strongly p -compactly packed R -module such that $J(M) \neq M$. Then M satisfies the ascending chain condition for P-radical submodules.

Proof. Let $N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq \ldots$ be an ascending chain of primary p-radical submodules of M. Let
$L=\bigcup_{i} N_{i}$, then L is a submodule of M . We claim that L is a proper submodule of M . In fact if $L=M$ and H a maximal submodule of M , so $H \not \subset \bigcup_{i} N_{i}$ then by theorem ((1.9)(iv)) there exists j such that $H \subseteq N_{j}$ and since H is a maximal submodule $H=N_{j}$ and this implies $\bigcup_{i} N_{i} \subseteq N_{j}$ that is $M \subseteq N_{j}$ which is a contradiction. So L is a proper submodule of M and by theorem (1.9) there exists $\quad \mathrm{j}$ such that $L \subseteq N_{j}$ so $N_{1} \subseteq N_{2} \subseteq N_{3} \subseteq \ldots N_{j}$ that is M satisfies the ascending chain condition for p-radical submodules.

The following is an immediate consequence of proposition (1.10).

Corollary

Let M be a finitely generated or multiplication strongly p compactly packed R -module, then M satisfies the ascending chain condition for p-radical submodules.

Recall that an R-module M is called Bezout Module if every finitely generated submodule of M is cyclic.

In the following proposition we give a condition for the converse of proposition (1.10) to hold.

Proposition

Let M be a Bezout R -module. If M satisfies the ascending chain condition for P-radical submodules, then M is strongly p-compactly packed module.

Proof. Let N be a proper submodule of M , it is easy to show that there exists a finitely generated submodule L of N such that $\operatorname{prad}_{M}(N)=\operatorname{prad}_{M}(L)$ But M is Bezout module so L is a cyclic submodule, there exists $m \in L$, such that $L=\langle m\rangle$, this implies $m \in N$ and $\operatorname{prad}_{M}(N)=\operatorname{prad}_{M}(\langle m\rangle)$ therefore by theorem (1.9), M is a strongly p -compactly packed module.

Now, we give a characterization of a strongly pcompactly packed finitely generated or multiplication module.

Proposition

Let M be a multiplication or finitely generated R -module. If we have one of the following:

1) M is a cyclic module .
2) M is a Bezout module .
3) R is a Bezout ring .

Then M is a strongly p-compactly packed module if and only if every primary submodule of M is a strongly p compactly packed submodule.

Proof. Suppose that every primary submodule of M is strongly p-compactly packed. Let N be a proper submodule of M such that $N \subseteq \bigcup_{\alpha \in \Lambda} N_{\alpha}$ where N_{α} is a primary submodule of M for each $\alpha \in \Lambda$. Assume $\bigcup_{\alpha \in \Lambda} N_{\alpha}=M$. Then L is strongly p-compactly packed and since $N \subseteq L \subset M=\bigcup_{\alpha \in \Lambda} N_{\alpha}$, so there exists $\beta \in \Lambda$
such that $L \subseteq N_{\beta}$, hence $N \subseteq L \subseteq N_{\beta}$. Now if $\bigcup_{\alpha \in \perp} N_{\alpha} \neq M \quad$, let $\quad S^{*}=M-\bigcup_{\alpha \in \Lambda} N_{\alpha} \quad$ and $\mathcal{S}^{2 \in}=R-\bigcup_{\alpha \in \Lambda} \sqrt{\left[N_{\alpha}: M\right]}$
so S^{*} is an S -closed subset of M and since $N \subseteq \bigcup_{\alpha \in \Lambda} N_{\alpha}$ it follows $N \subseteq M-S^{*}$, so there exists a submodule L
Maximal in $M-S^{*}$ and contains $\mathrm{N}[1, \mathrm{p} .75]$, L is a prime [1, p. 61], so primary submodule, but $L \subseteq \bigcup_{\alpha \in \Lambda} N_{\alpha}$ (because $L \subseteq M-S^{*}$) so there exists $\beta \in \Lambda$ such that $L \subseteq N_{\beta}$, hence $N \subseteq L \subseteq N_{\beta}$ Therefore M is a strongly p -compactly packed module. The converse is trivial.
In the remainder of this section we shall investigate the relation between the strongly p -compactly packed modules, p-compactly packed modules and the modules of fractions.
Our next result has some interest in itself.

Lemma

Let M be an R -module and S a multiplicatively closed set in R. If W is a primary submodule of the R_{S}-module M_{S}, then $\phi^{-1}(W)$ is a primary submodule of M.
Proof. Suppose that W is a primary submodule of M_{S}. First to show that is proper submodule of M , it is sufficient to show $\left[\phi^{-1}: M\right] \cap S=\varphi$. Suppose $r \in\left[\phi^{-1}: M\right] \cap S$, thus $r \in S$ and $r m \in \phi^{-1}(W)$ for all $m \in M, \phi(r m)=\frac{r m}{1} \in W$, for all $m \in M$. Let $\frac{a}{t} \in M_{s}$, so $\frac{a}{t}=\frac{r a}{r t}=\frac{r a}{1} \cdot \frac{1}{r t} \in W$, thus $M_{S} \subseteq W$ which is contradiction.
Now to show $\phi^{-1}(W)$ is primary submodule, let $r \in R$, $m \in M$ such that $r m \in \phi^{-1}(W)$ so $\phi(r m) \in W$, $\frac{r m}{1}=\frac{r}{1} \cdot \frac{m}{1} \in W$ but W is primary submodule of M_{S}, hence either $\frac{m}{1} \in W$ or $\phi(m)=\frac{m}{1} \in W$ this implies $m \in \phi^{-1}(W)$ or $\quad \frac{r}{1} \in \sqrt{\left[W: M_{S}\right]}$ so there exists $n \in Z^{+}$such that $\frac{r^{n}}{1} \cdot \frac{m}{s} \in W$ for all $\frac{m}{s} \in M_{s}$.
Therefore $\phi\left(r^{n} m\right)=\frac{r^{n} m}{1}=\frac{r^{n} m s}{s}=\frac{r^{n} m}{s} \cdot \frac{s}{1} \in W$, hence $r^{n} m \in \phi^{-1}(W)$ for all $m \in M$, thus $r \in \sqrt{\left[\phi^{-1}(W): M\right]}$, therefore $\phi^{-1}(W)$ is primary.
Now, we look at the relation between strongly pcompactly packed module M , and the module of fractions M_{S}.

Proposition

Let M be an R -module and S a multiplicatively closed set in R. If M is strongly p -compactly packed R -module then M_{S} is strongly p-compactly packed R_{S}-module.
Proof. Suppose $H \subseteq \bigcup_{\alpha \in \Lambda} W_{\alpha}$ where H is a proper submodule of M_{S} and W_{α} is a primary submodule of M_{S} for each
$\alpha \in \Lambda$. Hence $\phi^{-1}(H) \subseteq \phi^{-1}\left(\bigcup_{\alpha \in \Lambda} W_{\alpha}\right)$. So $\phi^{-1}(H) \subseteq \bigcup_{\alpha \in \Lambda} \phi^{-1}\left(W_{\alpha}\right)$ By Lemma (1.14) $\phi^{-1}\left(W_{\alpha}\right)$ is a primary submodule of M , there exists $\beta \in \Lambda$ such that $\phi^{-1}(H) \subseteq \phi^{-1}\left(W_{\beta}\right)$ hence $\left(\phi^{-1}(H)\right)_{S} \subseteq\left(\phi^{-1}\left(W_{\beta}\right)\right)_{S}$. We will show that $\left(\phi^{-1}(K)\right)_{S}=K$ for every submodule K of M_{S}. Let $\frac{x}{s} \in\left(\phi^{-1}(K)\right)_{s}$ where $x \in \phi^{-1}(K)$ and $s \in S$. So $\phi(x) \in K$, that is $\frac{x}{1} \in K$, hence $\frac{x}{1} \cdot \frac{1}{s}=\frac{x}{s} \in K$, so $\left(\phi^{-1}(K)\right)_{S} \subseteq K$. Now let $\frac{x}{s} \in K$, thus $\frac{x}{s} \cdot \frac{s}{1} \in K$, hence $\frac{x}{1} \in K$ that is $\phi(x) \in K$ so $x \in \phi^{-1}(K)$, thus $\frac{x}{s} \in\left(\phi^{-1}(K)\right)_{S}$ therefore $K \subseteq\left(\phi^{-1}(K)\right)_{s}$, consequently $K=\left(\phi^{-1}(K)\right)_{S}$ for all $K \subseteq M_{S}$. It follows $H \subseteq W_{\beta}$. Hence M_{S} is a strongly p-compactly packed module.
Turning now to the relation between p-compactly packed module M and the module of fractions M_{S}.

Proposition

Let M be an R -module and S a multiplicatively closed set in R. If M is p -compactly packed R -module then M_{S} is p compactly packed R_{S}-module.
Proof. Let $H \subseteq \bigcup_{\alpha \in \Lambda} W_{\alpha} \mathrm{H}$ is a proper submodule of M_{S} and W_{α} is a primary submodule of M_{S} for each $\alpha \in \Lambda$.
Hence $\quad \phi^{-1}(H) \subseteq \phi^{-1}\left(\cup_{\alpha \in \Lambda} W_{\alpha}\right) \quad$ So
$\phi^{-1}(H) \subseteq \bigcup_{\alpha \in \Lambda} \phi^{-1}\left(W_{\alpha}\right)$ By Lemma (1.14) $\phi^{-1}\left(W_{\alpha}\right)$ is a primary submodule of M ,
there exists $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \Lambda \quad$ such that $\phi^{-1}(H) \subseteq \bigcup_{i=1}^{n} \phi^{-1}\left(W_{\alpha i}\right)$
hence
$\left(\phi^{-1}(H)\right)_{s} \subseteq \bigcup_{i=1}^{n}\left(\left(\phi^{-1}\left(W_{\beta}\right)\right)\right)_{s}=\bigcup_{i=1}^{n}\left(\phi^{-1}\left(W_{\alpha_{i}}\right)\right)_{s}$.
Now, as in the proof of proposition (1.15), $H \subseteq \bigcup_{\alpha \in \Lambda} W_{\alpha}$.
Therefore M_{S} is p-compactly packed module.
The converses of the last two propositions are not true in general as is seen in the following example:

Example

Let X be an infinite set. Let R be the ring $(P(X), \Delta, \cap)$ which is a Bolean ring so it is regular.

Let $\mathrm{T}=\{\mathrm{H} \mid \mathrm{H}$ is a finite subset of X$\}$, so T is nonmaximal ideal of $\mathrm{P}(\mathrm{X})$, and for any $H \in T$ we have $\langle H\rangle$ is a radical ideal, since every proper ideal in a regular ring is radical ideal. This implies that $\langle H\rangle=\bigcap\{\mathrm{P} \mid \mathrm{P}$ is a prime ideal contains H$\}$. It is easy to show that every primary ideal L of $\mathrm{P}(\mathrm{X})$ is prime. This implies that $\operatorname{prad}_{P(X)}(H)=\langle H\rangle$, since $T \not \subset\langle H\rangle$ for all $H \in T$, that is $T \not \subset \operatorname{prad}_{P(X)}(\langle H\rangle)$ for all $H \in T$ so there exists primary ideal P_{H} such that $P_{H} \supseteq\langle H\rangle$
but $T \not \subset P_{H}$. Since $T=\bigcup_{H \in T}\langle H\rangle \subseteq \bigcup_{H \in T} P_{H} \quad$ So T is not p-compactly packed submodule. So $\mathrm{P}(\mathrm{X})$ is not p-compactly packed module.

On the other hand, for any maximal ideal P of R, R_{P} is a field because R is a regular ring, so R_{P} is p -compactly packed R_{P}-module.

References

[1] A. Z. Ani, "Compactly Packed Modules and Coprimely Packed Modules," M.Sc. Thesis, Baghdad University, College of Science, 1996.
[2] V. Erdo`gdu, "Coprimely Packed Rings," J. of Number Theory, vol. 28, pp.1-5, 1989.
[3] C. Gottlieb, "On Finite Unions of Ideals and Cosets," Comm. Algebra, vol. 22, 3087-3097, 1994.
[4] M. D. Larsen and P. J. McCarlthy, "Multiplication Theory of Ideals," Academic Press, New York, 1971.
[5] C. P. Lu, "Union of Prime Submodules, Houston J., Math," vol. 23, pp. 203-213, 1997.
[6] N. McCoy, "A Note on Finite Unions of Ideals and Subgroups," in Proc. Amer. Math. Soc, vol. 8, pp.633-637, 1957.
[7] J. M. A. Lamis, "The Primary Radical of a submodule, Advances in Pure Mathematics," 2012.

