
  
Abstract—Let R be a commutative ring with 1, and M is a 

(left) R–module. We introduce the concepts of (strongly) p-
compactly packed submodules as: A proper submodule N of 
an R-module M is called P-Compactly Packed if for each 
family { } Λ∈ααN of primary submodules of M  with 

αα NN Λ∈⊆ ∪ , there exists Λ∈nααα ,...,, 21 such 

that
i

NN n
i α1=⊆ ∪  .  If βNN ⊆ for some Λ∈β , then N  is 

called Strongly P-Compactly Packed. In this paper, we list 
some basic properties of this concept. In addition, the 
necessary and sufficient conditions for an R−module M to be 
(strongly) P-Compactly Packed are investigated.We also 
generalize the Prime Avoidance Theorem for modules that was 
proved in [7] to the Primary Avoidance Theorem for modules. 
Furthermore, we find the conditions on an R-module M that 
make the following important result true, that is for a 
multiplication Bezout module M, M is strongly P- compactly 
packed if and only if every primary submodule of M is strongly 
P- compactly packed. 

 
Index Terms—P-compactly packed submodule, Strongly p-

compactly packed submodule, MAXIMAL submodule, bezout 
module. 
 

I. INTRODUCTION 
Zaynab A.A.Al-Ani generalized the concept of compactly 

packed rings to modules and introduced the definition of 
compactly packed submodule and strongly compactly 
packed submodule; a proper submodule N of an R-module 
M is called compactly Packed if for each family{ } Λ∈ααN of 
prime submodules of M with  

αα NN Λ∈⊆ ∪  there exist Λ∈nααα ,...,, 21  such 
that

i
NN n

i α1=⊆ ∪ . If βNN ⊆ for some Λ∈β  then N  is 
called Strongly Compactly Packed. A module M is 
said to be Compactly Packed (Strongly Compactly 
Packed) if every proper submodule of M is compactly 
packed (or strongly compactly packed) submodule [1]. 

In this paper, we discuss the situation when the union of a 
family of primary submodules of M is considered. 

C. P. Lu generalized the Prime Avoidance Theorem to 
modules in terms of prime submodules [5]. We consider a 
generalization of this theorem to modules in terms of 
primary submodules. 

II. P-COMPACTLY PACKED AND STRONGLY P-
COMPACTLY PACKED SUBMODULES 

We introduce the following definition for p-compactly 
packed submodule and strongly p-compactly packed 
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submodule. 

 Definition 
A proper submodule N of an R-module M is called P-

Compactly Packed if for each family{ } Λ∈ααN  of  

primary submodules of M  with αα NN Λ∈⊆ ∪ , there 

exist Λ∈nααα ,...,, 21 such that 
i

NN n
i α1=⊆ ∪  .  

If
βNN ⊆ for some Λ∈β , then N  is called Strongly P-

Compactly Packed. 
A module M is said to be P-Compactly Packed (Strongly 

P-Compactly Packed) if every proper submodule of M is p-
compactly packed (strongly p-compactly packed). 

It is clear every strongly p-compactly packed submodule 
is a p-compactly packed submodule but the converse is not 
true is general, as is seen by the following example. 

 Example 
 Let V  be a vector space of dimension greater than 2 over 

the field ZZF 2/= . Then every subspace of V  is prime, 
so every subspace of V is primary. Let 

1e  and 
2e  be distinct 

vectors of a basis for V , FeV 11 = , 
,22 FeV = ( ) ,213 FeeV += and 

{ } 3212121 ,,,0 VVVeeeeL ∪∪=+= is an efficient union of 

three primary submodules with [ ] )0(: =MV i
, but 

iVL ⊄ for every .3,2,1=i  
In the following we give a condition under which the 

converse holed. For that we give a generalization of the 
prime avoidance theorem [5] in terms of primary 
submodules. 

 Definition  

 Let nLLL ,...,, 21 be submodules of an R-module M. 

We call a covering nLLLL ∪∪∪ ...21⊆  efficient if 
no

kL is superflous. Analogously we shall say 

nLLLL ∪∪∪ ...21= is an efficient union if none of 
the  sL k '  may be excluded. 

Any cover or union consisting of submodules of M can be 
reduced to an efficient one called an efficient reduction by 
deleting any unnecessary submodules. A covering of a 
submodule by two submodules of a module is never 
efficient. Thus nLLLL ∪∪∪ ...21⊆ may be possibly 
an efficient covering only when 1=n or 2〉n [6]. 

 Proposition  

Let nLLLL ∪∪∪ ...21⊆ be an efficient covering 
consisting of submodules of an R-moduleM where 2〉n . If 

]:[]:[ MLML kj ⊄  for every ,kj ≠ then no kL for 
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{ }nk ,...,1= is a primary submodule of M. 

Proof. Since nLLLL ∪∪∪ ...21⊆ is an efficient 
covering, then 

( ) ( ) ( )nLLLLLLL ∩∪∪∩∪∩ ...21= is an 

efficient union. Hence for every nk ≤ there exists an 

element .kk LLe −∈ Moreover, by Lemma 

(??), ( ) ( ) ( )kj
n
jjkj LLLLLL ∩∩∩∩∩ ⊆= =≠ 1 that 

is 
( ) ( ).kjkj LLLL ∩∩∩ ⊆≠ Now, for every kj ≠ , 

by hypothesis, ]:[]:[ MLML kj ⊄ so that there exists 

]:[ MLs jj ∈ but ]:[ MLs kj ∉ . Therefore there 

exists +∈Zt j such that .j
t
j LMs j ⊆  Let 

jkj tt ≠∏= = nkk tttt ...... 111 +− . Suppose that some kL is a 

primary submodule so ]:[ MLk is a prime ideal of R. Let 

jkj ss ≠∏= = nkk ssss ...... 111 +− . So j
t LMs ⊆  for every kj ≠ . 

But ]:[ MLs k∉ . Consequently ( )jk
t LLes ∩∈  for 

every kj ≠ . But ( )kk
t LLes ∩∉ . But this contradicts the 

fact that ( ) ( ).kjkj LLLL ∩∩∩ ⊆≠ Therefore  

kL is not primary submodule. 

 Theorem (The Primary Avoidance Theorem) 

Let M be an R-module , nLLL ,...,, 21  a finite number of  

submodules of M and L  a submodule of M such that 

nLLLL ∪∪∪ ...21⊆ assume that at most two of the 

sLi '  are not primary submodules and that 

]:[]:[ MLML kj ⊄  whenever kj ≠ then kLL ⊆  for some 

k. 
Proof. For the given covering nLLLL ∪∪∪ ...21⊆ , 

let
miii LLLL ∪∪∪ ...

21⊆  be an efficient reduction, 

then 21 ≠≤≤ mandnm . If 2〉m  there exists at least 

one jiL  which is primary. In view of proposition (1.4) this 

is impossible as ]:[]:[ MLML kj ⊄  if kj ≠ . Hence 1=m , 

thus kLL ⊆  for some k.          
The condition ]:[]:[ MLML kj ⊄ if kj ≠  in the statement 

of the theorem is essential as is seen in example (1.2) If N is 
a p-compactly packed submodule of an R-moduleM, such 
that whenever KH ≠ , then ]:[]:[ MLMH ⊄  for every 
proper submodules MofLandH , then by the primary 
avoidance theorem, N is a strongly p-compactly  packed 
submodule. 

Recall that J(M) denotes the Jacobson Radical of M [4, 
p.55]. The following proposition shows that p-compactly 
packed modules which have J (M) ≠ M, satisfies a certain 

kind of ascending chain condition.  

 Proposition 
Let M be a p-compactly packed R-module with J (M) 

≠ M, then M satisfies the ascending chain condition for 
primary submodules. 

Proof. ...321 ⊆⊆⊆ NNN be an ascending chain of 

primary submodules of M. Let .ii NN ∪= We claim that 

.MN ≠ In fact if MN = and H is a maximal 
submodule of M then ,ii NH ∪≠ so there exists 

knnn ,...,, 21 such that ,1 in
k
i NH =⊆ ∪ and since 

...321 ⊆⊆⊆ NNN is an ascending chain, so there 

exists { }km ,...,1∈ such that 
mi nn

k
i NN ==1∪ so 

mnNH ⊆ , then 
mnNH = , and consequently 

mnii NNM ==∪ which is a contradiction. So N is a proper 

submodule of M, thus there exists knnn ,...,, 21  such 

that ,1 in
k
i NN =⊆ ∪ and since ...321 ⊆⊆⊆ NNN is 

an ascending chain, so there exists { }km ,...,1∈ such that 

mi nn
k
i NN ==1∪ that is 

mnii NN ⊆∪ so 

mnNNNN ...321 ⊆⊆⊆ . Therefore M satisfies the 

ascending chain condition on primary submodules. 
Since finitely generated or multiplication module has a 

maximal submodule, the following corollary follows 
directly from the previous proposition. 

 Corollary 
If M is a generated or multiplication p-compactly finitely 

module, then M satisfies the ascending chain condition for 
primary submodules. 

The following proposition and theorem give 
characterizations of strongly p-compactly packed modules. 
Recall that the primary radical of a submodule N of an R-
module M, denoted by )(NpradM  is defined as the 
intersection of all primary submodules of M which contain 
N. If there exists no primary submodule of M containing N, 
we put )(NpradM  =M [7]. 

A proper submodule N of an R-module M with 
)(NpradM  = N will be called P-Radical Submodule [7]. 

 Proposition 
Let M be an R-module. M is strongly p-compactly packed 

if and only if every p-radical submodule of M is the primary 
radical of a cyclic submodule of it. 

Proof. Let N be a p-radical submodule of M such that N is 
not the primaryradical of a cyclic submodule of it, thus for 
each )(, 〉〈≠∈ mpradNNm M . So there exists a 

primary submodule 〉〈⊇ mLm but mLN ⊄ . 
Thus 

.. NmeachforNLisThatNLmforLmN mmmNmNm
∈⊄⊄⊆〉〈∪⊆〉〈∪=

∈∈

  

This contradicts that M is strongly p-compactly packed 
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module. Conversely, let α
α

NN
Λ∈

⊆ ∪ where αN  is a 

primary submodule of  
M for each λα ∈  and )( 〉〈= mpradN M  for some 

.Nm ∈ Since Nm ∈ , α
α

Nm
Λ∈

∈ ∪ , so there exists  

Λ∈β  such that βNm ∈ , hence 

,)(, ββ NmpradsoNm M ⊆〉〈⊆〉〈 that is βNN ⊆ . 

Therefore M is a strongly p-compactly packed module. 
  

 Theorem 
Let M be an R-module. The following statements are 

equivalent:- 
1) M is a strongly p-compactly packed module. 

2) For every proper submodule N of M, there 
exists Nm ∈ such that 

( ) )( 〉〈= mpradNprad MM . 

3) For every proper submodule N of M, if { } Λ∈ααN is 
a family of submodules of M, such that 

αα
NN

Λ∈
∪⊆ , then there exists Λ∈β such that 

)( βNpradN M⊆ . 

4) For every proper submodule N of M, if { } Λ∈ααN is 
a family of p-radical submodules of M, 
with { } Λ∈⊆ ααNN  there exists Λ∈β such that 

βNN ⊆ . 
Proof. :)2()1( ⇒  By the same argument of the proof of 

(1.8). 
:)3()2( ⇒ Let N be a proper submodule of M 

and { } Λ∈ααN be a family of submodules of M, such that 

αα
NN

Λ∈
∪⊆ . By (2) there exists Nm ∈ such that 

( ) )( 〉〈= mpradNprad MM . Since α
α

Nm
Λ∈

∈ ∪ , it 

follows  
that there exists Λ∈β such that βNm ∈  hence 

)()()(, ββ NpradmpradNpradNsoNm MMM ⊆〉〈=⊆⊆〉〈
. 

:)4()3( ⇒ It follows directly from the definition of P-
radical submodule N. 

:)1()4( ⇒ It is trivial. 
  

   In what follows we give a proposition which gives 
information about a strongly p-compactly packed module 
with MMJ ≠)( . 

  Proposition  
Let M be a strongly p-compactly packed R-module such 

that MMJ ≠)( . Then M satisfies the ascending chain 
condition for P-radical submodules. 

Proof. Let ...321 ⊆⊆⊆ NNN be an ascending 
chain of primary p-radical submodules of M. Let 

ii NL ∪= , then L is a submodule of M. We claim that L 

is a proper submodule of M. In fact if ML = and H a 
maximal submodule of M, so ii NH ∪⊄ then by theorem 

((1.9)(iv)) there exists j such that jNH ⊆ and since H is a 

maximal submodule jNH = and this implies 

jii NN ⊆∪ that is jNM ⊆  which is a contradiction. 

So L is a proper submodule of M and by theorem (1.9) there 
exists j such that jNL ⊆ so 

jNNNN ...321 ⊆⊆⊆ that is M satisfies the 

ascending chain condition for p-radical submodules. 
The following is an immediate consequence of 

proposition (1.10). 

 Corollary 
Let M be a finitely generated or multiplication strongly p-

compactly packed R-module, then M satisfies the ascending 
chain condition for p-radical submodules. 

Recall that an R-module M is called Bezout Module if 
every finitely generated submodule of M is cyclic. 

In the following proposition we give a condition for the 
converse of proposition (1.10) to hold. 

 Proposition 
Let M be a Bezout R-module. If M satisfies the ascending 

chain condition for P-radical submodules, then M is strongly 
p-compactly packed module. 

Proof. Let N be a proper submodule of M, it is easy to 
show that there exists a finitely generated submodule L of N 
such that ( ) )(LpradNprad MM = But M is Bezout 

module so L is a cyclic submodule, there exists Lm ∈ , 
such that 〉〈= mL , this implies Nm ∈ and 

( ) )( 〉〈= mpradNprad MM therefore by theorem (1.9), 
M is a strongly p-compactly packed module. 

 Now, we give a characterization of a strongly p-
compactly packed finitely generated or multiplication 
module. 

 Proposition 
Let M be a multiplication or finitely generated R-module. 

If we have one of the following: 
1) M is a cyclic module . 
2) M is a Bezout module . 
3) R is a Bezout ring . 

Then M is a strongly p-compactly packed module if and 
only if every primary submodule of M is a strongly p-
compactly packed submodule. 

Proof. Suppose that every primary submodule of M is 
strongly p-compactly packed. Let N be a proper submodule 
of M such that α

α
NN

Λ∈
⊆ ∪ where αN is a primary 

submodule of M for each Λ∈α . Assume MN =
Λ∈

α
α
∪ . 

Then L is strongly p-compactly packed and 
since α

α
NMLN

Λ∈≠
=⊂⊆ ∪ , so there exists Λ∈β   
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such that βNL ⊆ , hence  βNLN ⊆⊆ . Now if 
MN ≠

Λ∈
α

α
∪ , let α

α
NMS

Λ∈

∗ −= ∪  and 
[ ]MNRS :α

α Λ∈
−= ∪   

so ∗S  is an S-closed subset of M and since α
α

NN
Λ∈

⊆ ∪  

it follows  ∗−⊆ SMN ,so there exists a submodule L 

Maximal in ∗− SM  and contains N [1, p. 75], L is a 
prime [1, p. 61], so primary submodule, but α

α
NL

Λ∈
⊆ ∪  

(because ∗−⊆ SML  ) so there exists Λ∈β such 

that βNL ⊆ , hence βNLN ⊆⊆ Therefore M is a 

strongly p-compactly packed module. The converse is trivial.  
In the remainder of this section we shall investigate the 

relation between the strongly p-compactly packed modules, 
p-compactly packed modules and the modules of fractions. 

Our next result has some interest in itself. 

 Lemma 
Let M be an R-module and S a multiplicatively closed set 

in R. If W is a primary submodule of the −SR module SM  , 
then )(1 W−φ  is a primary submodule of M. 

Proof. Suppose that W is a primary submodule of SM . First 
to show that is proper submodule of M, it is sufficient to 
show ϕφ =− SM ∩]:[ 1 . Suppose SMr ∩]:[ 1−∈ φ , thus 

Sr ∈ and )(1 Wrm −∈ φ for all Mm ∈ , Wmrmr ∈=
1

)(φ , 

for all Mm ∈ . Let 
SM

t
a ∈ , so W

tr
ar

tr
ar

t
a ∈⋅== 1

1
, 

thus WMS ⊆  which is contradiction. 

Now to show )(1 W−φ is primary submodule, let Rr ∈ , 
Mm ∈ such that )(1 Wrm −∈ φ so Wmr ∈)(φ , 

Wmrmr ∈⋅=
111

 but W is primary submodule of SM  , 

hence either Wm ∈
1

or Wmm ∈=
1

)(φ this implies 

)(1 Wm −∈φ  or  ]:[
1 SMWr ∈  so there exists +∈ Zn such 

that W
s
mr n

∈⋅
1

for all 
SM

s
m ∈ .  

Therefore Ws
s
mr

s
msrmrmr

nnn
n ∈⋅===

11
)(φ , hence 

)(1 Wmr n −∈φ for all Mm ∈ , thus ]:)([ 1 MWr −∈ φ , 
therefore )(1 W−φ  is  primary. 

Now, we look at the relation between strongly p-
compactly packed module M, and the module of fractions 

SM . 

 Proposition 
Let M be an R-module and S a multiplicatively closed set 

in R. If M is strongly p-compactly packed R-module then 

SM  is strongly p-compactly packed SR -module. 

Proof. Suppose α
α

WH
Λ∈

⊆ ∪ where H is a proper submodule 

of SM  and αW is a primary submodule of SM  for each 

Λ∈α . Hence )()( 11
ααφφ WH Λ∈

−− ⊆ ∪ . So 

)()( 11
α

α
φφ WH −

Λ∈

− ⊆ ∪ By Lemma (1.14) )(1
αφ W− is a primary 

submodule of M, there exists Λ∈β such that 

)()( 11
βφφ WH −− ⊆  hence SS WH ))(())(( 11

βφφ −− ⊆ . We will 

show that KK S =− ))(( 1φ  for every submodule K of SM  . Let 

SK
s
x ))(( 1−∈ φ where )(1 Kx −∈φ  and Ss∈ . So Kx ∈)(φ , that 

is Kx ∈
1

, hence K
s
x

s
x ∈=⋅ 1
1

, so KK S ⊆− ))(( 1φ . Now let 

K
s
x ∈ , thus Ks

s
x ∈⋅

1
, hence Kx ∈

1
 that is Kx ∈)(φ  so 

)(1 Kx −∈φ , thus SK
s
x ))(( 1−∈ φ therefore SKK ))(( 1−⊆ φ ,  

consequently SKK ))(( 1−= φ  for all SMK⊆ . It follows 

βWH ⊆ . Hence SM  is a strongly p-compactly packed 
module. 

Turning now to the relation between p-compactly packed 
module M and the module of fractions SM . 

 Proposition 
Let M be an R-module and S a multiplicatively closed set 

in R. If M is p-compactly packed R-module then SM  is p-

compactly packed SR -module. 

Proof. Let α
α

WH
Λ∈

⊆ ∪  H is a proper submodule of SM  

and αW is a primary submodule of SM  for each Λ∈α .  

Hence )()( 11
ααφφ WH Λ∈

−− ⊆ ∪ . So 

)()( 11
α

α
φφ WH −

Λ∈

− ⊆ ∪ By Lemma (1.14) )(1
αφ W− is a primary 

submodule of M,  
there exists Λ∈nααα ,...,, 21 such that 

)()( 1
1

1
i

n
i WH αφφ −
=

− ⊆∪  hence 

S
n
iS

n
iS i

WWH ))(()))((())(( 1
1

1
1

1
αβ φφφ −

=
−

=
− =⊆ ∪∪ . 

Now, as in the proof of proposition (1.15), α
α

WH
Λ∈

⊆ ∪ .  

Therefore SM  is p-compactly packed module.         
The converses of the last two propositions are not true in 

general as is seen in the following example: 

 Example 
Let X be an infinite set. Let R be the 

ring ),),(( ∩ΔXP which is a Bolean ring so it is regular.  
Let T = {H|H is a finite subset of X}, so T is non-

maximal ideal of P(X), and for any TH∈  we have 〉〈H  is a 
radical ideal, since every proper ideal in a regular ring is 
radical ideal. This implies that 〉〈H  = ∩{P|P is a prime ideal 
contains H}. It is easy to show that every primary ideal L of 
P(X) is prime. This implies that 〉〈= HHprad XP )()( , since 

〉〈⊄ HT  for all TH∈ , that is )()( 〉〈⊄ HpradT XP for all 

TH∈  so there exists primary ideal HP  such that 〉〈⊇ HPH  
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but HPT ⊄  . Since HTHTH PHT ∈∈ ⊆〉〈= ∪∪   So T is not 
p-compactly packed submodule. So P(X) is not p-compactly 
packed module. 

On the other hand, for any maximal ideal P of R, PR  is a 

field because R is a regular ring, so PR  is p-compactly 

packed PR -module. 
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