
  
Abstract—The main aim of this paper is to introduce and 

investigate two new classes of irresolute functions called 
completely e*-irresolute functions and completely weakly e*-
irresolute functions in topological spaces by using the concept 
of e*-open sets was introduced by Erdal Ekici [1], and obtain 
some characterizations and several interesting properties 
concerning such these functions. Furthermore the relationships 
between these functions and some other types of continuous 
functions are also given.   
 

Index Terms—E*-Open Sets, e*-irresolute functions, 
completely e*-irresolute functions, completely weakly e*-
irresolute functions. 
 

I. INTRODUCTION  
Many different forms of irresolute functions have been 

introduced over the course of years. Certainly, it is hard to 
say whether one form is more or less important than another. 
Functions and of course irresolute functions stand among 
the most important and most researched points in the whole 
of mathematical science. In 1972, Crossley and Hildebrand 
[2] introduced the notion of irresoluteness. Various 
interesting problems arise when one considers irresoluteness. 
Its importance is significant in various areas of mathematics 
and related sciences. In 2009, Erdal Ekici [1] introduced a 
new class of generalized open sets called e*-open sets and 
studied several fundamental and interesting properties of e*-
open sets and introduced a new class of continuous 
functions called e*-continuous functions into the field of 
topology. Recently, in 2011, N. Rajesh [3] introduced two 
new types of irresolute functions via b-open sets. The 
purpose of this paper is to introduce and investigate other 
new types of irresolute functions via e*-open sets called 
completely e*-irresolute functions and completely weakly 
e*-irresolute functions. Some characterizations and several 
properties concerning such these functions are obtained. 

 

II. PRELIMINARIES 
Throughout this paper, (X, T) and (Y, T*) (or simply X 

and Y) mean topological spaces on which no separation 
axioms are assumed unless explicitly stated. For any subset 
A of X, The closure and interior of A are denoted by Cl(A) 
and Int(A), respectively.  

A subset A of a space (X, T) is called δ-open [4] if for 
each x ∈ A there exists a regular open set V such that 
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x∈V ⊂ A. The δ-interior of A is the union of all regular 
open sets contained in A and is denoted by Intδ(A). The 
subset A is called δ-open [4] if A = Intδ(A). A point x∈X is 
called a δ-cluster points of A [4] if A∩Int(Cl(V)) ≠ Ø for 
each open set V containing x. The set of all δ-cluster points 
of A is called the δ-closure of A and is denoted by Clδ(A). If 
A = Clδ(A)), then A is said to be δ-closed [4]. The 
complement of δ-closed set is said to be δ-open set. 

A subset A of a space X is called e*-open [1] if 
A ⊂ Cl(Int(Clδ(A))), the complement of an e*-open set is 
called e*-closed. The intersection of all e*-closed sets 
containing A is called the e*-closure of A [1] and is denoted 
by e*-Cl(A). The union of all e*-open sets of X contained in 
A is called the e*-interior [1] of A and is denoted by e*-
Int(A).  

A subset A is said to be regular open (resp. regular closed) 
[5] if A = Int(Cl(A)) (resp. A= Cl(Int(A))). 

The family of all regular open (resp. regular closed, e*-
open, e*-closed) subsets of X containing a point x∈X is 
denoted by RO(X, x) (resp. RC(X, x) E*Σ(X, x), E*C(X, x)). 
The family of all regular open (resp. regular closed, e*-open, 
e*-closed) sets in X are denoted by RO(X, T) (resp. RC(X, 
T), E*Σ(X, T), E*C(X, T)).  

 

III. CHARACTERIZATIONS OF COMPLETELY E*-
IRRESOLUTE FUNCTIONS 

In this section, we obtain some characterizations and 
several properties concerning completely e*-irresolute 
functions. 

A. Definition . 

  A function f: (X, T) → (Y, T*) is said to be: 
1) strongly continuous [6] if f −1(V) is both open and 

closed in X for each subset V of Y; 
2) completely continuous [7] if f −1(V) is regular 

open in X for each open set V of Y; 
3) e*-continuous [1], if f −1(V ) is e*-open in X for 

every open set V of Y. 
4) e*-irresolute [8] if f −1(V)∈E*Σ(X, T) for every 

V∈E*Σ(Y, T). 
5) Completely e*-irresolute if the inverse image of 

every e*-open subset of Y is regular open in X.   

B. Remark  
It is clear that, every strongly continuous function is 

completely e*-irresolute and every completely e*-irresolute 
function is e*-irresolute function. However, the converses of 
the implications are not true in general as shown in the 
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following examples.  

C. Example  
Let X = Y = {1, 2, 3}, Define a topology T= {Ø, X, {1}, {2, 

3}} on X and a topology T*= {Ø, Y, {1}} on Y. Then the 
identity function f: (X, T) → (Y, T*) is completely e*-
irresolute but not strongly continuous. 

D. Example  
Let X = Y = {1, 2, 3}, Define a topology T= {Ø, X, {1, 2}} 

on X and a topology T*= {Ø, Y, {1}, {1, 2}} on Y. Then the 
identity function f: (X, T) → (Y, T*) is e*-irresolute but not 
completely e*-irresolute.  

E. Remark  
From the above arguments, we obtain Figure (1) shown  

below: 

 
 Fig.1 

 
F. Theorem  
For a function f: (X, T) → (Y, T*) the following statements 

are equivalent: 
1) f is completely e*-irresolute; 
2) f −1(M) is regular closed in X for every e*-closed 

set M of Y.  
Proof. (a) ⇒  (b): Let M be any e*-closed set of Y. Then 

Y\M∈E*Σ(Y, T*). By (a), f −1(Y\M) = X \ f −1(M) ∈  RO(X, 
T). We have f −1(M)∈RC(X, T). (b) ⇒ (a): is similar to 
proof (a) ⇒  (b) thus omitted. 

G. Lemma  
Let K be an open subset of a topological space (X, T). 

Then the following hold: 
1) If U is regular open in X, then so is U∩K in the 

subspace (K, TK). 
2) If B ⊂ K is regular open in (K, TK), then there 

exists a regular open set U in (X, T) such that B = 
U∩K. 

H. Theorem  
 If f :( X, T) →(Y, T*) is a completely e*-irresolute 

function and A is any open subset of X, then the restriction 
f│A: A → Y is completely e*-irresolute. 

Proof. Let M be an e*-open subset of Y. By hypothesis f 
−1(M) is regular open in X. Since A is open in X, it follows 
from Lemma (3.1) that (f |A)−1(M) = A∩ f −1(M), which is 
regular open in A. Therefore, f |A is completely e*-
irresolute. 

I. Theorem  
For functions   f: (X, T) →(Y, T*) and g :( Y, T*) → (Z, 

T**) the following hold: 
1) If f is completely e*-irresolute and g is e*-

irresolute. Then, gof: X → Z  is completely e*-
irresolute; 

2) If f is completely continuous and g is completely 
e*-irresolute. Then, gof is completely e*-irresolute; 

3) If f is completely e*-irresolute and g is e*-
continuous. Then, gof is completely continuous 
function. 

4) If f is strongly continuous and g is completely e*-
irresolute. Then, gof is completely e*-irresolute. 

5) If f and g are completely e*-irresolute. Then, gof: 
X → Z is completely e*-irresolute. 

Proof. The proof is obvious it is follows from their 
respective definitions thus omitted. 

J. Definition  
A space (X, T) is said to be almost connected [10] (resp. 

e*-connected [8]) if X cannot be written as the union of two 
nonempty disjoint regular open (resp. e*-open) sets. 

K. Theorem  
If f :( X, T) → (Y, T*) is a completely e*-irresolute 

surjective function and X is almost connected, then Y is e*-
connected. 

Proof. Suppose that Y is not e*-connected. Then there 

exist disjoint e*-open sets A and B of Y such that A∪ B = Y. 
Since f is completely e*-irresolute surjective, f −1(A) and f 

−1(B) are regular open sets in X. moreover, f −1(A) ∪  f 
−1(B) = X, f −1(A) ≠ Ø and f −1(B) ≠ Ø. This shows that X 
is not almost connected, which is a contradiction to the 
assumption that X is almost connected. By a contradiction, 
we have Y is      e*-connected.   

L. Definition  
A topological space (X, T) is said to be: 

1) nearly compact[11] if every regular open cover of 
X has a finite subcover; 

2) nearly countably compact [12] if every cover by 
regular open sets has a countable subcover; 

3) nearly Lindelof [10] if every cover of X by regular 
open sets has a countable subcover; 

4) e*-compact [13] if every cover of X by e*-open 
sets has a finite sub cover; 

5) countably e*-compact if every countable cover of 
X by e*-open sets has a finite subcover;  

6) e*-Lindelof if every cover of X by e*-open sets has 
a countable subcover. 

M. Theorem  
If f :( X, T) → (Y, T*) is a completely e*-irresolute 

surjective function. Then the following statements hold: 
1) If X is nearly compact, then Y is e*-compact. 
2) If X is nearly Lindelof, then Y is e*-Lindelof. 
3) If X is nearly countably compact, then Y is 

countably e*-compact. 
Proof. (a). Let f: X → Y be a completely e*-irresolute 

function of nearly compact space X onto a space Y. Let {Uλ: 
λ∈Δ} be any e*-open cover of Y. Then, { f  −1(Uλ) : λ∈Δ } 
is a regular open cover of X. Since X is nearly compact, 
there exists a finite subfamily, { f  −1(Uλi):i = 1, 2, ...,n} of 
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{ f  −1(Uλ) : λ∈Δ } which cover X. then It follows that {Uλi: 
i = 1, 2, ..., n} is a finite subfamily of {Uλ: λ∈Δ} which 
cover Y. Hence, space Y is an e*-compact space. The proof 
of (b) and (c) cases are similar to (a) thus omitted. 

N. Definition  
A topological space (X, T) is said to be: 

1) S-closed [14] (resp. e*-closed compact) if every 
regular closed (resp. e*-closed)cover of X has a 
finite subcover; 

2) countably S-closed-compact [15] (resp. countably 
e*-closed compact) if every countable cover of X 
by regular closed (resp. e*-closed) sets has a finite 
subcover;  

3) S-Lindelof [16] (resp. e*-closed Lindelof) if every 
cover of X by regular closed (resp. e*-closed) sets 
has a countable subcover. 

O. Theorem  
If f:( X, T) → (Y, T*) is a completely e*-irresolute 

surjective function. Then the following hold: 
1) If X is S-closed, then Y is e*-closed compact.  
2) If X is S-Lindelof, then Y is e*-closed Lindelof. 
3) If X is countably S-closed-compact, then Y is 

countably e*-closed compact. 
Proof. The proof can be obtained similarly as the 

Theorem M . 

P. Definition  
A topological space (X, T) is said to be: 

1) almost regular [17] if for each regular closed set 
M ⊂ X and any point x∈X\M, there exists disjoint 
open sets U and V such that x∈U and   M ⊂ V. 

2)  Strongly e*-regular if for each e*-closed set M ⊂ X 
and for each point x∈X\M, there exists disjoint e*-
open sets U and V such that x∈U and M ⊂ V. 

Q. Definition  
A function f :( X, T) → (Y, T*) is called pre-e*-closed if 

the image of each e*-closed set of X is an e*-closed set in Y.  

R. Theorem   
If a mapping f :( X, T) → (Y, T*) is pre-e*-closed, then for 

each subset B of Y and an e*-open set U of X containing f 
−1(B), there exists a e*-open set V in Y containing B such 
that f −1(V ) ⊂ U. 

Proof. This proof is obvious thus omitted. 

S. Theorem  
If f: (X, T) → (Y, T*) is completely e*-irresolute e*-open 

from an almost regular space X onto a space Y, then Y is 
strongly e*-regular.  

Proof. Let M be an e*-closed set in Y with y∉M. Take y 
= f (x). Since f is completely e*-irresolute. Then,      f −1(M) 
is regular closed and so closed set in X and x∉  f −1(M). By 
almost regularity of X, there exists disjoint open sets U and 
V such that x∈U and f −1(M) ⊂ V. We obtain that y = f 
(x)∈  f (U) and M ⊂  f (V) such that   f (U) and f (V) are 
disjoint e*-open sets. Thus, Y is strongly e*-regular. 

T. Definition  
A topological space (X, T) is said to be: 

1) almost normal [18] if for each closed set A and 
each regular closed set B such that A∩B = Ø, there 
exist disjoint open sets U and V such that A ⊂ U 
and B ⊂ V. 

2) Strongly e*-normal if for each pair of disjoint e*-
closed subsets A and B of X, there exist a disjoint 
e*-open sets U and V such that A ⊂ U and B ⊂ V.  

U. Theorem  
If f: (X, T) → (Y, T*) is completely e*-irresolute e*-open 

from an almost normal space X onto a space Y, then Y is 
strongly e*-normal.   

Proof. Let A and B be two disjoint e*-closed subsets in Y. 
Since f is completely e*-irresolute, f −1(A) and   f −1(B) are 
disjoint regular closed and so closed sets in X. By almost 
normality of X, there exist disjoint open sets U and V such 
that f −1(A) ⊂ U and f −1(B) ⊂ V. We obtain that A ⊂  f (U) 
and B ⊂  f (V) such that f (U) and f (V) are disjoint e*-open 
sets. Thus, Y is strongly e*-normal. 

V. Definition  
A topological space (X, T) is said to be e*-T1 [8] (resp. r-

T1 [10]) if for each pair of distinct points x and y of X, there 
exist e*-open (resp. regular open) sets A and B containing x 
and y, respectively, such that x∉B and y∉A.   

W. Theorem  
If f: (X, T) → (Y, T*) is a completely e*-irresolute 

injective function and Y is e*-T1, Then X is r-T1. 
Proof. Suppose that Y is e*-T1. For any two distinct 

points x and y of X, there exist e*-open sets M1 and M2 in 
Y such that f (x)∈M1, f (y)∈M2, f (x)∉M2 and f (y)∉M1. 
Since f is injective completely e*-irresolute function, we 
have X is r-T1. 

X. Definition  
A topological space (X, T) is said to be e*-T2 [8] (resp. r-

T2 [3]) for each pair of distinct points x and y in X, there 
exist disjoint e*-open (resp. regular open) sets A and B in X 
such that x∈A and y∈B. 

Y. Theorem  
If f: (X, T) → (Y, T*) is a completely e*-irresolute 

injective function and Y is e*-T2. Then, X is r-T2. 
Proof. Similar to proof of Theorem (3.10). 

Z. Theorem  
 Let Y be an e*-T2 space. Then, the following statements 

hold: 
1) If f, g :( X, T) → (Y, T*) are completely e*-

irresolute functions, then the set K = {x∈X: f (x) = 
g (x)} is δ-closed in X. 

2) If f: X→ Y is a completely e*-irresolute function. 
Then, the set S = {(x, y)∈X×X : f (x) = f (y)} is    
δ-closed in X×X. 

Proof. (a). Let x∉K, then f (x) ≠ g (x). Since Y is e*-T2, 
Then there exist disjoint e*-open sets A and B in Y such that 
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f (x)∈ A and g(x)∈ B. Since f and g are completely e*-
irresolute functions, then, f −1(A) and g −1(B) are regular 
open sets. Put U = f −1(A) ∩ g −1(B). Then U is a regular 
open set containing x and U∩K ≠ Ø. Hence we have 
x∉Clδ(K). (b). the proof is follows from (1). 

 

IV. CHARACTERIZATIONS OF COMPLETELY WEAKLY 
E*-IRRESOLUTE FUNCTIONS 

In this section, we obtain some characterizations and 
several properties concerning completely weakly e*-
irresolute functions. 

A. Definition  
A function f: (X, T) → (Y, T*) is said to be a completely 

weakly e*-irresolute if for each x∈X and for each e*-open 
set V containing f (x), there exists an open set U containing 
x such that f (U) ⊂ V. 

B. Remark  
It is obvious that, every completely e*-irresolute function 

is completely weakly e*-irresolute and every completely 
weakly e*-irresolute function is e*-irresolute. But the 
converses not be true in general as shown in the following 
examples. 

C.  Example  
Let X = {1, 2, 3}, Define a topology T= {Ø, X, {1}, {1, 2}, 

{1, 3}} and T*= {Ø, X, {1}, {1, 2}} on X. Then the identity 
function f :( X, T) → (X, T*) is completely weakly e*-
irresolute but not completely e*-irresolute. 

D. Example  
Let X = {1, 2, 3}, Define a topology T= {Ø, X, {1}, {1, 2}} 

and a topology T*= {Ø, X, {1}, {1, 3}} on X. Then the 
identity function f :( X, T) → (X, T*) is e*-irresolute but not 
completely weakly        e*-irresolute.  

E. Remark  
From the Remarks of (3.1), (4.1) we obtain Figure (2) 

shown below: 
 

 
Fig.2 

F. Theorem  
For a function f: (X, T) → (Y, T*) the following 

statements are equivalent: 
1) f is completely weakly e*-irresolute;  
2) For each x∈X and each e*-open set V of Y 

containing f (x), there exists an open set U of X 
containing x such that f (U) ⊂ V;  

3) f (Cl(A)) ⊂ e*-Cl( f (A)) for every subset A of X ; 
4) Cl( f −1(B)) ⊂  f −1(e*-Cl(B)) for every subset B 

of Y ; 
5) For each e*-closed set V in Y , f −1(V) is closed in 

X ; 
6) f −1(e*-Int(B)) ⊂ Int( f −1(B)) for every subset B 

of Y. 
Proof. The proof of this theorem is obvious thus omitted. 

G. Theorem  
Let f: X→ Y be a function. If the graph g: X → X×Y of f is 

completely weakly e*-irresolute, then so is f. 
Proof. Let V be an e*-open subset of Y. Then f −1(V) = g 

−1(X×V). Since g is completely weakly e*-irresolute and 
X×V is e*-open in X×Y, f −1(V) is open in X and so, f is 
completely weakly e*-irresolute. 

H. Theorem  
For functions   f: (X, T) →(Y, T*) and g :( Y, T*) → (Z, 

T**) the following hold: 
1) If f is completely weakly e*-irresolute function and 

g is e*-irresolute. Then, gof: X → Z is completely 
weakly e*-irresolute; 

2) If f is completely continuous and g is completely 
weakly e*-irresolute. Then, gof: X → Z completely 
e*-irresolute;  

3) If f is completely e*-irresolute and g is completely 
weakly e*-irresolute. Then, gof: X → Z is 
completely e*-irresolute. 

4) If f is completely weakly e*-irresolute function and 
g is e*-continuous. Then, gof is continuous.  

5) If f is e*-irresolute and g is completely weakly e*-
irresolute function. Then, gof is e*-irresolute. 

6) If f is continuous and g is completely weakly e*-
irresolute function. Then, gof: X → Z is completely 
weakly e*-irresolute.  

Proof. The proof is obvious it is follows from their 
respective definitions thus omitted. 

Recall that a function f: (X, T) →(Y, T*) is said to be 
almost open if f −1(V) is regular open in X for every open 
set V of Y. 

I. Theorem  
Let f: (X, T) → (Y, T*) be almost open function and let 

g :( Y, T*) → (Z, T**) be any function such that gof: (X, T) 
→ (Z, T**) is completely e*-irresolute, then g is completely 
weakly e*-irresolute. 

Proof. Let V be an e*-open set in (Z, T**). Since gof is 
completely e*-irresolute, (gof) −1(V) = f −1( g −1(V)) is 
regular open in (X, T). Since f is almost open surjection, f (f 
−1( g −1(V))) = g −1(V) is open in Y . Therefore, g is 
completely weakly e*-irresolute. 

J. Theorem  
Let f: (X, T) → (Y, T*) be open surjection function and let 

g :( Y, T*) → (Z, T**) be any function such that gof: (X, T) 
→ (Z, T**) is completely weakly e*-irresolute, then g is 
completely weakly e*-irresolute. 

Proof. Similar to proof of Theorem (4.4). 

K. Definition  
A filterbase £ is said to be: 
£-convergent to a point x in X if for each U∈E*Σ(X, x), 

there exists B∈£ such that B ⊂ U. 
Convergent to a point x in X if for each open set U of X 

containing x, there exists B∈£ such that B ⊂ U.  
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L. Theorem  
Let f: (X, T) →(Y, T*) be completely weakly e*-irresolute 

function, then for each point x∈X and each filterbase -e*- in 
X converging to x, the filterbase f (£) is e*-convergent to f 
(x). 

Proof. Let x∈X and £ be any filterbase in X converging 
to x. Since f is completely weakly e*-irresolute, then for any 
e*-open set V of (Y, T*) containing f (x), there exists an 
open set U of X containing x such that  f (U) ⊂ V. Since £ is 
converging to x, there exists B∈£ such that B ⊂ U. This 
means that f (B) ⊂ V and hence the filterbase f (£) is e*-
convergent to f (x).  
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